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Abstract

In this paper, we propose an improved inference procedure for the interactive fixed-

effects model in the presence of cross-sectional dependence and heteroskedasticity. It is

well known in the literature that the lease square (LS) estimator in this model by Bai [2009]

is asymptotically biased when the error term is cross-sectionally dependent, and we address

this problem. Our procedure involves two parts: correcting the asymptotic bias of the LS

estimator and employing the cross-sectional dependence robust covariance matrix estima-

tor. We prove the validity of the proposed procedure in the asymptotic sense. Since our

approach is based on the spatial HAC estimation, e.g., Conley (1999), Kelejian and Prucha

(2007), and Kim and Sun (2011), we need a distance measure that characterizes the depen-

dence structure. Such a distance may not be available in practice, and we address this by

considering a data-driven distance that does not rely on prior information. We also consider

a bandwidth selection procedure based on the cluster wild bootstrap method. Monte Carlo

simulations show our procedure work well in finite samples. As empirical illustrations, we

apply the proposed approach to study the effects of divorce law reforms on U.S. divorce

rates (Wolfers [2006]) and the impacts of clean water and sewerage interventions on U.S.

child mortality (Alsan and Goldin [2019]).
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1 Introduction

It is crucial to properly allow for unobserved heterogeneity that may evolve over time and

potentially correlate with regressors in panel regression analysis. For example, in macroeco-

nomics, the heterogeneous impacts of unobserved common shocks on different countries. In

applied microeconomics, the demographic structure and social and cultural factors that change

over time and affect policy reforms and their corresponding effects. The typical way to address

this issue is to use the standard fixed-effects model, in which the individual- and time-specific

effects enter the model additively. However, one concern of this approach is that it may not be

flexible enough to capture the various patterns of heterogeneity. An alternative way to tackle

this concern is to employ the interactive fixed effects (IFE) model, in which the individual-

and time-specific effects enter the model interactively. The IFE model includes the additive

fixed-effects model as a special case but is significantly more flexible. Bai [2009] develops the

LS estimator for the IFE model using the principal component analysis. This paper considers

inference for the IFE model in the presence of cross-sectional dependence.

There has been growing attention on the IFE model in the literature, and the model can apply

to various economics disciplines, such as applied microeconomics, asset pricing, and forecast-

ing. In large N but fixed T panels, Holtz-Eakin et al. [1988] explore a quasi-differencing ap-

proach, which uses appropriate lagged variables as instruments to estimate the quasi-differenced

version of the IFE model; Ahn et al. [2001] propose a generalized method of moments (GMM)

estimator and show it is more efficient than the LS estimator. In large N and large T panel

models, Pesaran [2006] investigates the common correlated effects (CEE) estimator that con-

trols time-specific effects by using cross-sectional averages of the dependent and independent

variables; Bai [2009] develops the LS estimator using the principal component analysis and

establishes the asymptotics. Moon and Weidner [2017] also consider the LS estimator for the

IFE model in the dynamic panel model context.

In this paper, we propose an inference procedure that improves upon Bai [2009]’s method

in the presence of cross-sectional dependence and heteroskedasticity. More specifically, we de-
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velop a bias correction of the LS estimator and employ the cross-sectional dependence robust

covariance matrix estimator. Our work is empirically relevant since the cross-sectional corre-

lation is common in panel data. For example, when one uses state-level data, while nationwide

cross-sectional correlation can be captured by the factor structure, local correlations among

neighbor states may remain in the idiosyncratic errors. Under the large N and T asymptotics,

Bai [2009] shows that the LS estimator is asymptotically biased when the idiosyncratic errors

are heteroskedastic or correlated in both dimensions. This is an incidental parameters problem

(Neyman and Scott, 1948; Nickell, 1981) in the IFE model, which is crucial because failure to

control it can lead to a misleading inference. We assume there is no serial dependence in order

to focus on issues caused by cross-sectional dependence.

Our procedure involves two parts: correcting the incidental parameters bias due to cross-

sectional dependence and employing the cross-sectional dependence robust covariance matrix

estimator. Using the fact that the bias forms a cross-sectional version of the long-run covari-

ance structure, we develop the estimator of this bias based on the time-series average of spatial

heteroskedasticity and autocorrelation (TA-SHAC) estimators, which is first proposed by Con-

ley [1996, 1999]. This approach is further studied by Kelejian and Prucha [2007] and Kim and

Sun [2011]. We also propose an estimator for the covariance matrix of the model parameters

using the spatial HAC estimation method.

Our work complements the IFE model literature. Regarding the inference of this model

under cross-sectional dependence, Bai [2009] proposes a partial sample approach. However,

this approach may be tough to implement in practice because the partial sample should be

selected to replicate the dependence structure of the whole cross-sample, which is often in-

feasible. Another approach that yields valid inference in this setting is the GLS method by

Bai and Liao [2017]. Their GLS transformation eliminates cross-sectional correlation, so the

estimator becomes asymptotically centered at the actual value. While the GLS approach is at-

tractive because it is efficient and incidental parameters bias-free, its inference is not as stable

as our procedure in finite samples. Our simulation shows that the GLS inference often produces

substantial size distortions.
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There are two challenges to implementing our procedure and we employ simple approaches

to overcome those challenges. The first challenge is how to choose a proper distance measure

to construct the TA-SHAC estimators. Since our bias estimator and covariance matrix estimator

are constructed based on the spatial HAC estimation method, we need a distance measure that

characterizes the dependence structure of data. A typical way in the literature is to find an aux-

iliary variable that captures the decaying pattern of dependence in data (e.g., the transportation

cost in Ligon and Conley [2001]; the geographic distance in Pinkse et al. [2002]). However,

such a variable may not be available in some applications. To address this issue, we propose

a data-driven distance that reflects the cross-sectional dependence structure directly. See, for

example, Mantegna [1999], Fernandez [2011], Cui et al. [2020] and Kim [2021]. An advantage

of this approach is that we do not need prior information about the dependence structure for

implementation.

The second challenge is how to select the bandwidth parameters. This is particularly chal-

lenging in our setting because we need to choose two bandwidth parameters jointly in estimat-

ing the asymptotic bias and the covariance matrix. We consider a bootstrap-based bandwidth

selection procedure. To replicate the cross-sectional dependence, we follow Hidalgo and Schaf-

gans [2017] and Kim [2021] to employ a cluster wild bootstrap approach, in which each cluster

contains all cross-sectional units in one time period. Using the bootstrap, we choose the band-

widths that control the size properly in finite samples.

Our procedure can be applied to the broad empirical literature in economics. We illustrate

this with two empirical examples. The first one is the well-known problem of the U.S. divorce

rates affected by divorce law reforms around the 1970s. Using the standard fixed-effects model

with weighted least squares (WLS) estimation, Wolfers [2006] identifies the rise of divorce

rates in the first eight years after the law reform. However, the robustness of Wolfers [2006]’s

results is doubted in two regards. First, the model he uses may not be flexible enough to capture

the factors varying over time and across states (e.g., the stigma of divorce; religious belief).

This may lead to the observed large discrepancy between the ordinary least squares (OLS) and

WLS estimates found by Droes and Lamoen [2010] and Lee and Solon [2011]. Second, the
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idiosyncratic errors in his model are assumed to be cross-sectionally independent, which does

not seem to be appropriate in practice. Kim and Oka [2013] employ the IFE model for the

study. Their results confirm the findings of Wolfers [2006] and are robust to the weighting

schemes. However, their bias correction procedure and standard error estimation do not take

the cross-sectional dependence into account. We apply the proposed approach and provide

inference results for this model. We find the IFE model with the proposed procedure yields

smaller estimates with wider confidence intervals than Kim and Oka [2013]’s results.

The second example studies the effects of clean water and effective sewerage systems on

U.S. child mortality. An essential question in public health is the cause of the sharp decrease

in the U.S. and Massachusetts infant mortality from 1870 to 1930. Alsan and Goldin [2019]

exploit the independent and combined effects of clean water and effective sewerage systems

on under-5 mortality in Massachusetts, 1880-1920. For empirical strategy, they employ a stan-

dard fixed-effects model, which identifies the two interventions together account for approx-

imately one-third of the decline in the log of child mortality during the 41 years. Since they

use the municipality-level data, the potential unobserved time-varying heterogeneity and cross-

sectional correlation in the idiosyncratic errors may affect the results. To check the robustness

of their results, we employ the IFE model with the proposed inference procedure for the study.

We find that the combined impacts of sewerage and safe water treatments on child mortality

are significantly decreased by using the IFE model with the proposed procedure.

The remainder of the paper is as follows. Section 2 reviews the IFE model. Sections 3 and

4 introduces our method and its implementation procedure. Section 5 presents the simulation

results. Section 6 applies our method to make inference on the effects of divorce law reforms

on the U.S. divorce rates and the effects of clean water and sewerage interventions on U.S.

child mortality. The last section concludes. All proofs are given in the Appendix.
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2 Review of IFE model

In this section, we review the LS estimator and its asymptotics in Bai [2009]. We consider the

following panel model with interactive fixed effects

Yit = X ′itβ0 + uit, uit = λ′iFt + εit, i = 1, · · ·N ; t = 1, · · · , T, (1)

where Yit is an outcome variable; Xit is a (p× 1) vector of regressors; β0 is a (p× 1) vector of

unknown coefficients; uit is an error term. We assume a factor-loading structure in uit, where

λi is a (r × 1) vector of factor loadings, Ft is a (r × 1) vector of common factors, and εit

represents the idiosyncratic error. The number of factors is r and is assumed to be known. Xit

can be correlated with λi or Ft alone, or simultaneously correlated with both of them; εit is

allowed to be weakly correlated in both dimensions. We can rewrite (1) as

Yi = Xiβ0 + Fλi + εi, (2)

where Yi = (Yi1, · · · , YiT )′, Xi = (Xi1, · · · , XiT )′, (T × p), F = (F1, · · · , FT )′ and εi =

(εi1, · · · , εiT )′. Let Λ = (λ1, · · · , λN)′. Given F and {Λ}, the LS estimator for β0 is given by

β̂(F,Λ) = arg min
β0

min
F,λi

N∑
i=1

(Yi −Xiβ0 − Fλi)′(Yi −Xiβ0 − Fλi), (3)

subject to 1
T

∑T
t=1 FtF

′
t = Ir and

∑
i=1 λiλ

′
i being diagonal. These two restrictions are used to

identify factors and loadings. Using the first order condition to concentrate out Λ, we have

β̂(F ) =

(
N∑
i=1

X ′iMFXi

)−1 N∑
i=1

X ′iMFYi, (4)

where MF = IT −F (F ′F )−1F ′ . For the estimation of F , note that (2) reduces to a pure factor

model given β, and we can use the principal components analysis (PCA). More specifically,

the LS estimator of F given β is equal to
√
T times the eigenvectors that are associated with
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the r largest eigenvalues of
∑N

i=1(Yi −Xiβ)(Yi −Xiβ)′.

Therefore, the final LS estimator (β̂, F̂ ) is obtained by solving the following equations

simultaneously:

β̂ =

(
N∑
i=1

X ′iMF̂Xi

)−1 N∑
i=1

X ′iMF̂Yi, (5)

and [
1

NT

N∑
i=1

(Yi −Xiβ̂)(Yi −Xiβ̂)′

]
F̂ = F̂ VNT , (6)

where VNT is a diagonal matrix of the r largest eigenvalues of the matrix in the square bracket.

Given β̂ and F̂ , we have Λ̂ = (Y −Xβ̂)′F̂ /T .

Throughout the paper, we define the Euclidean norm by ‖v‖ = (v′v)1/2 for a vector v and

the Frobenius norm by ‖A‖F = (tr(A′A))1/2 for matrix A. We denote F 0 as the true parameter

for F that satisfies Assumption A2 below.

Bai [2009] makes the following assumptions to establish the asympotics.

Assumption A1. E||Xit||4 ≤M and let F = {F : F ′F/T = I}. Define

H(F ) =
1

NT

N∑
i=1

X ′iMFXi −
1

T

[
1

N2

N∑
i=1

N∑
k=1

X ′iMFXkaik

]
, (7)

where aik = λ′i(Λ
′Λ/N)−1λk. We assume inf

F∈F
H(F ) > 0.

Assumption A2. (i) E||Ft||4 ≤ M and 1
T

∑T
t=1 FtF

′
t

p→ ΣF > 0 for some r × r matrix ΣF ,

as T → ∞; (ii) The factor loading matrix Λ is non-random. ||λi|| ≤ C and 1
N

Λ′Λ → ΣΛ for

some r × r positive definite matrix ΣΛ, as N →∞.

Assumption A3.

(i) E(εit) = 0 and E|εit|8 ≤M ;

(ii) E(εitεks) = 0 for all (i, k) if t 6= s. E(εitεkt) = σik,t, |σik,t| < σ̄ik for all (i, k) and t such

that
1

N

N∑
i,k=1

σ̄ik ≤M, and
1

NT

N∑
i,k=1

T∑
t=1

|σik,t| ≤M.

The largest eigenvalue of Ωi = Eεiε
′
i is uniformly bounded in i and T .

7



(iii) For every (t, s), E
∣∣∣N−1/2

∑N
i=1 [εisεit − E (εisεit)]

∣∣∣4 ≤M .

(iv) Moreover

T−2N−1
∑

t,s,u,v

∑
i,k |cov (εitεis, εkuεkv)| ≤M,

T−1N−2
∑

t,s

∑
i,j,k,` |cov (εitεjt, εksε`s)| ≤M.

Assumption A4. εit is independent of Xks and Fs for all i, t, k and s.

Assumption A5. We have

HZ = plim
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

T∑
s=1

σik,tsZitZ
′
ks,

1√
NT

N∑
i=1

Z ′iεi
d−→ N (0, HZ) ,

(8)

where Zi = MF 0Xi − 1
N

∑N
k=1 aikMF 0Xk.

Assumption A1 indicates H(F ) is positive definite and excludes the low-rank regressors

(e.g. time-invariant and common regressors) in (2). Assumption A2 is a standard assumption

for factor models. Under this assumption, the largest r eigenvalues of the covariance matrix of

Y diverge, while the rest are bounded as N, T → ∞. It ensures the consistency of the PCA

estimators for F and Λ in the factor model. Assumption A3 states εit is serially uncorrelated

but allows for weak cross-sectional correlation and heteroskedasticity. Assumption A4 rules

out the dynamic panel data model. Assumption A5 states a central limit theorem holds for the

moment process.

Under Assumptions 1-5, Bai [2009] shows that

√
NT

(
β̂ − β0

)
d−→ N

(
ρ1/2B0, H

−1
0 HZH

−1
0

)
(9)
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as T/N → ρ, where H0 = plimH(F 0) and H(F ) is defined in (7),

HZ = plim
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

E(εitεkt)ZitZ
′
kt,

B0 = plimBNT with BNT = −H
(
F 0
)−1 1

N

N∑
i=1

N∑
k=1

wiλk

(
1

T

T∑
t=1

Eεitεkt

)
,

(10)

where

wi = plim
[

(Xi − Vi)′ F 0

T

](
F 0′F 0

T

)−1(
Λ′Λ

N

)−1

and Vi =
1

N

N∑
k=1

aikXk.

The formula of B0 in (10) implies that B0 = 0 and β̂ is unbiased when cross-sectional

correlation and heteroskedasticity are absent. If not, however, β̂ is asymptotically biased, and

inference without correcting this bias leads to misleading statistical conclusions.

3 Inference on β0

In this section, we propose an inference procedure for β0, which is valid under cross-sectional

correlation and heteroskedasticity. Our approach involves two parts: correcting the bias of the

β̂ and employing the cross-sectional dependence robust covariance matrix estimator for HZ .

3.1 Correcting the bias

As presented in (9), β̂ is asymptotically biased in the presence of cross-sectional dependence

and heteroskedasticity and it is necessary to estimate B0 for valid inference. In this regard, Bai

[2009] suggests the partial sum estimator, which is given by

B̂CS = −Ĥ−1
0

1

nsub

nsub∑
i=1

nsub∑
k=1

ŵiλ̂k

(
1

T

T∑
t=1

ε̂itε̂kt

)
, (11)
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where nsub is a sub-sample selected from the whole sample and Ĥ0 and ŵi are the estimators

of H0 and wi, respectively, defined as

Ĥ0 =
1

NT

N∑
i=1

X ′iMF̂Xi −
1

T

[
1

N2

N∑
i=1

N∑
k=1

X ′iMF̂Xkâik

]
,

ŵi =


(
Xi − V̂i

)′
F̂

T

(Λ̂′Λ̂

N

)−1

,

(12)

with V̂i = N−1
∑N

k=1 âikXk and âik = λ̂′i(Λ̂
′Λ̂/N)−1λ̂k. Bai shows that B̂CS converges to B0

as nsub/min{N, T} → 0. A critical issue to implement this approach is how to select partial

observations to replicate the cross-sectional dependence structure of the whole sample. This

may not be feasible in practice if the dependence structure is unknown. To the best of our

knowledge, there is no practical guidance on this selection in the literature.

Let

JNT =
1

T

T∑
t=1

Jt where Jt = lim
N→∞

1

N

N∑
i=1

N∑
k=1

wiλkE(εitεkt). (13)

Then we can write BNT = −H (F 0)
−1
JNT . We propose an estimator of JNT based on the

spatial HAC estimation approach. Define

ĴNT =
1

T

T∑
t=1

Ĵt with Ĵt =
1

N

N∑
i=1

N∑
k=1

K

(
dik

d
(1)
n

)
ŵiλ̂kε̂itε̂kt, (14)

where K(·) is a real-valued kernel function, d(1)
n is a bandwidth parameter, and dik is a distance

between units i and k that reflects the strength of their cross-sectional dependence. Note that Ĵt

has a form of the spatial HAC estimator (e.g., Kelejian and Prucha, 2007; Kim and Sun, 2011)

and ĴNT can be viewed as its time series average. Based on ĴNT , our estimator of B0 is

B̂NT = −H(F̂ )−1ĴNT , (15)
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and our bias corrected estimator of β is given by

β̂† = β̂ − 1

N
B̂NT . (16)

3.2 Robust covariance estimation

We also propose an estimator for the covariance matrix HZ in (10), which is consistent in the

presence of cross-sectional dependence and heteroskedasticity. HZ is conventionally estimated

with

ĤZ =
1

N

N∑
i=1

σ̂2
i

(
1

T

T∑
t=1

ẐitẐ
′
it

)
, (17)

where σ̂2
i = 1

T

∑T
t=1 ε̂

2
it. However, ĤZ is constructed based on the assumption of cross-

sectional independence, so it is not valid when εit are cross-sectional correlated. In this regard,

Bai [2009] proposes a partial sample method, which is given by

ĤCS =
1

nsub

nsub∑
i=1

nsub∑
k=1

(
1

T

T∑
t=1

ẐitẐ
′
ktε̂itε̂kt

)
, (18)

and establishes its consistency as nsub/min{N, T} → 0.

As discussed in Section 3.1, a practical issue in implementing a partial sample estimator is

that it is hard to construct a partial sample to replicate the overall cross-sectional dependence

structure. In fact, we find that we do not need to rely on a partial sample to estimate HZ . That

is, it can be estimated with

H̃CS =
1

N

N∑
i=1

N∑
k=1

(
1

T

T∑
t=1

ẐitẐ
′
ktε̂itε̂kt

)
. (19)

Since a distance measure is available in our setting, we propose an estimator of HZ using

the spatial HAC estimation method. Our estimator is given by

ĤNT =
1

T

T∑
t=1

Ĥt with Ĥt =
1

N

N∑
i=1

N∑
k=1

ẐitẐ
′
ktε̂itε̂ktKF

(
dik

d
(2)
n

)
, (20)
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where d(2)
n is a bandwidth parameter. As our bias estimator in Section 3.1, ĤNT has a form

of time average of spatial HAC estimators {Ĥt}. We note that the proposed estimator ĤNT

includes H̃CS as a special case by choosing d(2)
n large enough if KF (·) is a rectangular kernel.

3.3 Asymptotics

This section establishes the asymptotics of ĴNT and ĤNT . We assume that εit has a linear

representation

εit =
∞∑
`=1

γit,`e`, (21)

where {γit,`} are unknown constants and {e`} are iid innovations. This linear array process is

commonly used to characterize spatial dependence in the literature (e.g., Kelejian and Prucha

[2007]; Robinson [2011]; Kim and Sun [2011, 2013]; Pesaran and Tosetti [2011]; Kim [2021]),

which includes the widely used spatial parametric models as special cases. By employing a

linear array to establish the asymptotics, we avoid to introduce a mixing-type condition, which

is difficult to justify in the cross-sectional dimension according to Bai and Ng [2006]. We start

from the assumptions on the distance measure and kernels used in them.

Assumption B2. (i) dik ≥ 0, dii = 0, and dik = dki, (ii) dik is time invariant.

This assumption implies that the TA-SHAC estimators does not require dik to satisfy the

triangular inequality, dik ≤ dij+djk, which is in contrast to the standard spatial HAC estimation

in the literature (e.g., Conley, 1999; Kim and Sun, 2011). Data on economic distances usually

contain measurement errors. Under certain conditions, we can generalize the results of this

paper to the case when dik is contaminated by measurement errors. In this paper, however, we

do not consider measurement errors for simplicity.

Assumption B3. (i) The kernelK : R→ [−1, 1] satisfiesK(0) = 1, K(x) = K(−x), K(x) =

0 for |x| ≥ 1. (ii) For all x1, x2 ∈ R there is a constant, cL < 0, such that

|K (x1)−K (x2)| ≤ cL |x1 − x2| .
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Examples of kernels that satisfy this assumption are the Bartlett, Tukey-Hanning, and

Parzen kernels.

To establish the consistency of ĴNT , we define the infeasible version of ĴNT as

J̃NT =
1

T

T∑
t=1

J̃t with J̃t =
1

N

N∑
i=1

N∑
k=1

K

(
dik

d
(1)
n

)
wiλkεitεkt, (22)

which is identical to ĴNT but is based on the true value of wi and λk. Using J̃NT , the difference

between ĴNT and JNT can be decomposed into three parts:

ĴNT − JNT = (ĴNT − J̃NT ) + (J̃NT − EJ̃NT ) + (EJ̃NT − JNT ). (23)

The first term is due to the effect of estimation errors in the factor model. The second and

third terms represent the variance and bias of the infeasible estimator J̃NT . The following

assumptions are made to control the effect of estimation errors and characterize the variance

and bias of J̃NT .

Assumption B4. e`
iid∼ (0, 1) and E(e4

`) ≤ ∞, for all `.

Here we assume that e`i is independent of e`k for i 6= k. Under this assumption, JNT in

(13) can be expressed as

JNT =
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

wiλkγit,`γkt,`. (24)

Assumption B5. (i) limN,T→∞
∑N

i=1

∑T
t=1 |γit,`| < ∞ for all `; (ii) limN,T→∞

∑∞
l=1 |γit,`| <

∞ for all i and t; (iii) ‖wi‖ ≤ C for i = 1, · · · , N .

This assumption requires the summation of the coefficients of the linear process in (21) to

being finite, which corresponds to the weak dependence assumption of the idiosyncratic errors.

Note that |γit,`| can be interpreted as the absolute change of εit in response to one unit change

in e`, so assumption B5 requires the aggregate response of εit to all innovations to be finite. We

introduce this assumption to control the variance of J̃NT .
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Let

`i =
N∑
k=1

1 {dik ≤ dn} and `n =
1

N

N∑
i=1

`i,

where `i is the number of pseudo-neighbors that unit i have within the bandwidth, and `n is the

average number of pseudo-neighbors. The number of pseudo-neighbors is increased with the

bandwidth we choose.

Assumption B6. `i ≤ c``n for all i = 1, · · · , N with some constant c`.

This assumption allows different number of pseudo-neighbors for different units. It rules

out the case that only a few terms have many cross-sectional correlated neighbours while others

have none or very few.

The asymptotic bias of J̃NT is determined by the smoothness of the kernel at zero and the

rate of decaying of the spatial dependence . Let q = max{q0 : Kq0 < ∞} be the Parzen

characteristic exponent of K(x) with

Kq0 = lim
x→0

1−K(x)

|x|q0
, for q0 ∈ [0,∞).

Then, q is the largest value of q0 for Kq0 to be finite, which reflects the smoothness of K(x) at

x = 0.

Assumption B7. There exists a finite constant M such that

lim
N,T→∞

1

NT

N∑
i=1

N∑
k=1

T∑
t=1

‖Γik,t‖ dqik < M, with Γik,t = E (εitεkt) . (25)

This assumption characterizes the weak dependence between εit and εkt with respect to dik.

The equation (25) implies that dik captures the decaying pattern of the dependence structure

in the idiosyncratic errors, so that Γik,t decreases to zero fast enough as dik grows. This is

a critical assumption for us to control the asymptotic bias of J̃NT caused by the truncation

and downweight imposed by the kernel function. For example, when dik increases, the weight

that K(·) assigns to εitεkt in (14) will decrease, which does not cause much bias under this

assumption since E(εitεkt) also decreases.
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The consistency of ĴNT based on the decomposition in (23) is given in Theorem 1. The

consistency of ĤNT is given in Theorem 2. The proofs are all contained in Appendix.

Theorem 1. Under the Assumptions A1-A4 and B2-B7, and dn, `n, N, T → ∞ such that

`n/N, `n/T → 0 and T/N → ρ, we have ĴNT − JNT = op(1).

Theorem 2. Under the Assumptions A1-A4 and B1-B7, and dn, `n, N, T → ∞ such that

`n/N, `n/T → 0 and T/N → ρ, we have ĤNT −HZ = op(1).

Corollary 1. Under the Assumptions of Theorem 1 and 2, then

√
NT (β̂† − β0)√
Ĥ−1

0 ĤNT Ĥ
−1
0

d→ N(0, 1),

where β̂† defines in (16) and ĤNT defines in (20).

4 Implementation

As we introduced before, there are two major challenges for implementing our procedure in

practice. The first challenge is how to choose a proper distance measure to construct the TA-

SHAC estimators. Since our bias estimator and covariance matrix estimator are constructed

by the spatial HAC estimation approach, we need a distance measure that characterizes the

dependence structure of data. The literature typically finds a relevant auxiliary variable as the

distance, which captures the decaying pattern of dependence in the data (e.g., the transportation

cost in Ligon and Conley [2001]; the geographic distance in Pinkse et al. [2002]). However,

such a variable may not be available in some applications. To address this issue, we propose a

data-driven distance that reflects the cross-sectional dependence structure directly. Specifically,

define

dD
ik =

1

|ρik|
− 1,

where ρik = Corr(εit, εkt). dD
ik captures the degree of dependence by definition. Note that

dD
ik is unobservable and does not satisfy the triangular inequality, dik ≤ dij + djk, but we can
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estimate it by its sample counterpart

d̂Dik = min {1/|ρ̂ik|, 100} − 1,

with ρ̂ik =
∑T

t=1 ε̂itε̂kt/
√∑T

t=1 ε̂
2
it

∑T
t=1 ε̂

2
kt and show that our estimators are still valid without

the triangular inequality. This approach has been applied in many applications (e.g., Mantegna

[1999]; Fernandez [2011]; Cui et al. [2020]; Kim [2021]) and has a crucial advantage than the

conventional distance, in which no prior information is required for implementation. We apply

this approach in the simulation and the empirical applications.

The second challenge is how to select the bandwidth parameters properly. This is particu-

larly challenging in our setting because we need to choose two bandwidth parameters jointly

in estimating the asymptotic bias and the covariance matrix. We consider a bootstrap-based

bandwidth selection procedure. The idea of this procedure comes from Kim et al. [2017], in

which they also need to select two smoothing parameters jointly in their test procedure. But we

can not apply their method directly since they can generate the time-series dependence of the

sample simply by a regular AR model. To replicate the cross-sectional dependence, we follow

Hidalgo and Schafgans [2017] and Kim [2021] to employ a cluster wild bootstrap approach, in

which each cluster contains all cross-sectional units in one time period. Using the bootstrap,

we choose the bandwidths that control the size properly in finite samples.

Specifically, let D(1)
nM = {d(1)

n1 , · · · , d
(1)
nM} and D(2)

nS = {d(2)
n1 , · · · , d

(2)
nS} be the sets of reason-

able bandwidth parameters d(1)
n and d(2)

n for a given sample size. The procedure involves the

following steps.

Step 1: Estimate β̂, F̂t, Λ̂ by the iteration procedure used in Bai [2009] and the error terms by

ε̂t = Yt −Xtβ̂ − Λ̂F̂t.
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Step 2: Generate bootstrap sample Y ∗t based on

Y ∗t = Xtβ̂ + Λ̂F̂t + ε∗t ,

ε∗t = ε̂tξt with ξt
iid∼ (0, 1).

Step 3: Estimate the bootstrap version of β̂∗, F̂ ∗t , Λ̂∗, and ε̂∗t as step 1. Construct the bootstrap

version of the bias estimator B̂∗NT (d
(1)
nm) with d(1)

nm ∈ D(1)
nM such that

B̂∗NT (d(1)
nm) = −H(F̂ ∗)−1 1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

K

(
dik

d
(1)
nm

)
ŵ∗i λ̂

∗
kε̂
∗
itε̂
∗
kt

]
,

where H(F̂ ∗) and ŵ∗i are the bootstrap version estimators of H (F 0) and wi with F 0, λi, and Λ

replaced by F̂ ∗, λ̂∗i , and Λ̂∗.

Step 4: Estimate the bootstrap version of the covariance matrix estimator Ĥ∗NT (d
(2)
ns ) with

d
(2)
ns ∈ D(2)

nS such that

Ĥ∗NT
(
d(2)
ns

)
=

1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

Ẑ∗itẐ
∗′
ktε̂
∗
itε̂
∗
ktKF

(
dik

d
(2)
ns

)]
,

where Z∗i = MF ∗Xi − 1
N

∑N
k=1 a

∗
ikMF ∗Xk, MF ∗ = IT − F ∗(F ∗′F ∗)−1F ∗′

and a∗ik = λ∗i
′(Λ∗′Λ∗/N)−1λ∗k.

Step 5: Generate B bootstrap samples and compute the bootstrap based t-test statistics

t∗b(d
(1)
nm, d

(2)
ns ) =

β̂†∗

SE(β̂∗)
, for b = 1, 2, · · · ,B,

where β̂†∗ is the bootstrap version of the bias corrected estimator and SE(β̂∗) is the standard

error for β̂∗ such that

β̂†∗ = β̂∗ − 1

N
B∗NT

(
d(1)
nm

)
and SE(β̂∗) =

√
H(F̂ ∗)−1Ĥ∗NT (d

(2)
ns )H(F̂ ∗)−1

NT
.

17



Step 6: Repeat Step 2 to Step 5 for each (d
(1)
nm, d

(2)
ns ) ∈ D(1)

nM

⊗
D(2)
nS . Compute

V(d(1)
nm, d

(2)
ns ) =

1

B

B∑
b=1

1(|t∗b(d(1)
nm, d

(2)
ns )| > tα/2),

and select (d
(1∗)
nm , d

(2∗)
ns ) that solves

max
d
(1)
nm∈D

(1)
nM ,d

(2)
nm∈D

(2)
nM

V(d(1)
nm, d

(2)
ns ), s.t. V(d(1)

nm, d
(2)
ns ) ≤ α.

Note that we employ the cluster wild bootstrap to generate bootstrap sample Y ∗t in step

2, in which each cluster contains all cross-sectional units in one time period. The external

random variable ξt replicates the cross-sectional dependence of the sample in time period t.

Hence, B̂∗NT (d
(1)
nm) and Ĥ∗NT (d

(2)
ns ) are expected to be a good approximation to B̂NT (d

(1)
nm) and

ĤNT (d
(2)
ns ). We generate ξt from Rademacher Distribution in our simulation and empirical

application.

Based on (d
(1∗)
nm , d

(2∗)
ns ), the proposed confidence interval for β0 at a 100(1− α)% level is

CI(β0) =

[
β̂† − qα/2

√
SE(β̂), β̂† + q1−α/2

√
SE(β̂)

]
,

where β̂† is the bias corrected estimator and SE(β̂) is the robust standard error for β̂ such that

β̂† = β̂ − 1

N
B̂NT

(
d(1∗)
nm

)
and SE(β̂) =

√
H(F̂ )−1ĤNT (d

(2∗)
ns )H(F̂ )−1

NT
.

Thus, our bootstrap-based bandwidth selection procedure is designed to choose (d
(1∗)
nm , d

(2∗)
ns )

jointly that improves the inference of the LS estimator β̂ by correcting the asymptotic bias and

estimating the covariance matrix.

Different bootstrap methods could be used in step 2 as long as they replicate the cross-

sectional dependence of the sample in one time period (e.g., the CSD bootstrap by Gonçalves

and Perron [2020]). We may also consider a parametric bootstrap-based spatial regression

model if the location of each unit is available. The theoretical properties of the cluster wild
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bootstrap method are not examined in this paper, and we leave it for future research.

5 Monte Carlo Simulation

In this section, we investigate the finite sample performance of the proposed procedure for

correcting the bias and improving the inference of the LS estimator β̂. Follow Bai [2009], the

data generating process (DGP) we consider is

Yit = Xitβ0 + λ′iFt + εit,

where the true value of β0 = 1. The number of common factors is two and is assumed to be

known. The regressors and factors are generated according to

Xit = µ+ cλ′iFt + ι′λi + ι′Ft + ηit; with ι′ = (1, 1),

Frt = ρFr,t−1 +
√

1− ρ2vrt, r = 1, 2;

λir, ηit, vrt
iid∼ N(0, 1).

We set c = µ = 1 and ρ = 0.3, so there is a weak serial correlation between factors. We

generate the cross-sectional correlated data using a popular spatial MA model. The design is

based on an (LN × LN) square integer lattice structure (LN = 14, 16), where unit i is located

on a square grid of integers (i1, i2) such that

εt = (In + θM1 + θ2M2)vt, t = 1, 2, · · · , T

where εt = (εt1, · · · , εtN)′, vt = (vt1, · · · , vtN)′ and vit is i.i.d N(0, 1). M1 = [m1,ik]
N
i,k=1 and

M2 = [m2,ik]
N
i,k=1 are (N ×N) spatial weighting matrices such that

m1,ik =

 1 if dik = 1

0 if dik 6= 1
and m2,ik =

 1 if dik =
√

2

0 if dik 6=
√

2
,
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where dik = max{|i1 − k1|, |i2 − k2|}. Thus, units i and k are cross-sectional dependent if the

distance between them is 1 or
√

2. The distance between two units is measured by Euclidean

distance.

To construct the TA-SHAC estimators, we use the data-driven distance measure dDik that is

defined as

dD
ik =

1

|ρik|
− 1,

where ρik = Corr(εit, εkt). By definition, we can see that dDik is a decrease function of the

correlation and reflects the degree of dependence between unit i and k. While dDik does not

satisfy the triangular inequality, so it is not a valid distance, we can show that our estimators

are still valid. Also, dDik is unobservable in practice, but we can use the sample counterpart as

d̂Dik = min {1/|ρ̂ik|, 100} − 1,

where ρ̂ik =
∑T

t=1 ε̂itε̂kt/
√∑T

t=1 ε̂
2
it

∑T
t=1 ε̂

2
kt. Note that we don’t need any prior informa-

tion about the dependence structure to construct d̂Dik, which is a critical advantage than the

conventional distance. To select the bandwidth parameters (d
(1)
n , d

(2)
n ), we apply the bootstrap-

based bandwidth selection procedure in section 4. We choose bandwidth parameter sets to be

D(1)
nM = D(2)

nS = {2 : 10}, so we have (9 × 9) different pairs of (d
(1)
n , d

(2)
n ) for the selection.

In the simulation, we find that almost all of the selected bandwidth (d
(1∗)
nm , d

(2∗)
ns ) in step 6 fall

in the interior of the bandwidth parameter sets, so we believe D(1)
nM and D(2)

nS are reasonable

sets for the selection. For the kernel function, we employ Parzen kernel for estimating the bias

B̂NT (d
(1∗)
n ), and Bartlett kernel for estimating the covariance matrix ĤNT (d

(2∗)
n ).

As we discussed before, another approach that yields valid inference in this setting is the

GLS method by Bai and Liao [2017]. They focus on the efficient estimation of β0. The corre-

sponding GLS estimator is given by

β̂(Σ̂−1
ε ) = arg min

β0
min
F,λi

N∑
i=1

(Yi −Xiβ0 − Fλi)′Σ̂−1
ε (Yi −Xiβ0 − Fλi), (26)
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where Σ̂ε is a consistent estimator of the covariance matrix of εit, which is a high-dimensional

matrix. To estimate Σε, they assume it is a sparse covariance matrix and apply the thresholding

method in Fan et al. [2013]. Their GLS transformation eliminates cross-sectional correlation, so

the estimator becomes asymptotically centered at the actual value. We apply the GLS method in

our simulation for comparison. We choose the tuning parameter recommended by the authors

for employing the thresholding method.

In Table 1, we report the scaled biases and root mean square error (RMSE) for different

estimators with 1000 repetitions. B(β̂) is scaled bias that equals
√
NT times the difference

between the IFE LS estimator β̂ and its true value β0. With similar interpretations, B(β̂gls),

B(β̂∗hac), and B(β̃∗hac) are the scaled biases for the GLS estimator, TA-SHAC estimator using

the data-driven distance measure (dDik), and TA-SHAC estimator using the true distance measure

(dTik). The reason why we scaled the bias and RMSE with
√
NT is that the IFE LS estimator β̂

is
√
NT consistent, so the inference of β̂ is affected by the

√
NT scaled bias.

The results in Table 1 show that when there is no cross-sectional correlation in εit (θ = 0),

the scaled biases and corresponding RMSE for all of the estimators are similar. When there

exists weak cross-sectional dependence in εit (θ = .4), a few patterns emerge. First, the scaled

bias of β̂ are almost twice than the case without cross-sectional correlation. For example, when

T = 150, N = 144 and θ = 0, B(β̂) = 0.801; when θ = .4, B(β̂) = 1.642. Second, when

N is fixed, the scaled bias of β̂ increases as T increasing. For example, when T = 50 and

N = 144, B(β̂) = 1.579; when T = 150 and N = 144, B(β̂) = 1.642. This is consistent

with the theory, since the asymptotic bias of β̂ in (9) depends on ρ = T/N . Third, the TA-

SHAC estimator using the data-driven distance (β̂∗hac) have similar performance with the TA-

SHAC estimator using the true distance (β̃∗hac) in terms of bias correction. For example, when

T = 150, N = 144, B(β̂) = 1.642; whileB(β̃∗hac) = 1.367 andB(β̂∗hac) = 1.383. This implies

that the data-driven distance measure is valid for bias correction. Lastly, the GLS estimator β̂gls

performs the best in terms of reducing bias and RMSE. For example, when T = 150, N = 144,

B(β̂gls) = 0.617; while B(β̃∗hac) = 1.367 and B(β̂∗hac) = 1.383.

Table 2 presents the empirical coverage probabilities (EPCs) of the 95% confidence in-
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tervals for different estimators. β̂hac1, β̂hac2, and β̂∗hac are the TA-SHAC estimators using the

data-driven distance measure (dDik). For β̂hac1, we estimate the covariance matrix only by the

TA-SHAC estimator ĤNT in (20) without bias correction. For β̂hac2, we correct the bias only by

the TA-SHAC estimator B̂NT in (15) with the conventional covariance matrix estimator in (17).

We use β̂hac1 and β̂hac2 to compare which part (bias correction or robust covariance estimation)

in our procedure is more important for inproving the inference of β̂. For β̂∗hac, we both correct

the bias and estimate the covariance matrix by the proposed estimators. For comparison, we

use the true distance (dTik) in β̃hac1, β̃hac2, and β̃∗hac with similar interpretations.

From the results in Table 2, we can see that when there is no correlation in εit (θ = 0), the

EPCs for all of the estimators are close to the nominal coverage probability (0.95). However,

when there exist weak cross-sectional correlation in εit (θ = .4), the EPCs of β̂ is not valid.

For example, when N = 144, T = 150, the EPC of β̂ decreases to 0.777. Also, the EPCs

of β̂gls is not valid when T is large. For example, when N = 144, T = 150, the EPC of

β̂gls decreases to 0.797. In contrast, β̂∗hac and β̃∗hac perform well in the present of weak cross-

sectional correlation in εit and robust to different combination of N and T . Also, they have

better performance when N is larger. For example, when N = 144, T = 150, the EPC for β̂∗hac

is 0.86; when N = 200, it increases to 0.911. Furthermore, the TA-SHAC estimators are able

to improve the EPCs regardless of dTik or dDik is used, although the one with dTik performs slightly

better in general. For example, when N = 144, T = 150, the EPC for β̃∗hac is 0.878, while

the EPC for β̂∗hac is 0.86. This finding gives us an important implication from an empirical

point of view. That is, we can apply our method with dDik, which can be directly obtained from

time-series observations. Besides, in terms of improving the EPCs, the performance of β̂hac1

and β̂hac2 clearly show that bias correction is more important than using the robust covariance

matrix. For example, when N = 144 and T = 150, β̂hac2 can improve the EPC of β̂ from 0.777

to 0.854, while β̂hac1 can only improve the EPC of β̂ from 0.777 to 0.806.

In conclusion, in the presence of weak cross-sectional correlation, the IFE LS estimator β̂ is

biased with invalid inference. Although the GLS estimator β̂gls has the best performs in terms

of reducing the bias, its inference is not stable when T is large. Our simulation shows that the
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GLS inference often produces substantial size distortions. The proposed procedure can correct

the bias and provide valid inference using the TA-SHAC estimators with data-driven distance

measures in finite samples.

Table 1: Scaled bias and RMSE of different estimators

TA-SHAC (dTik) TA-SHAC (dDik)

T N B(β̂) RMSE B(β̂gls) RMSE B(β̃∗hac) RMSE B(β̂∗hac) RMSE

θ = 0
50 144 0.848 1.072 0.867 1.098 0.849 1.073 0.841 1.056

100 0.832 1.061 0.843 1.071 0.833 1.062 0.805 1.011
150 0.801 1.026 0.808 1.042 0.802 1.027 0.856 1.058
200 0.792 0.989 0.804 1.003 0.793 0.990 0.785 1.004
50 196 0.790 1.017 0.818 1.044 0.790 1.018 0.828 1.022

100 0.864 1.075 0.871 1.082 0.864 1.075 0.801 1.008
150 0.800 1.015 0.815 1.036 0.799 1.015 0.810 1.015
200 0.787 0.988 0.799 1.002 0.787 0.987 0.784 1.004

θ = .3
50 144 1.680 2.112 1.344 1.704 1.536 1.968 1.620 2.040

100 1.152 1.452 0.732 0.912 1.116 1.416 1.092 1.368
150 1.190 1.484 0.647 0.808 1.073 1.367 1.102 1.382
200 1.256 1.578 0.611 0.764 1.171 1.459 1.137 1.442
50 196 1.198 1.495 0.980 1.228 1.119 1.406 1.168 1.455

100 1.092 1.372 0.686 0.854 1.106 1.372 1.036 1.302
150 1.063 1.337 0.583 0.737 1.115 1.389 1.012 1.252
200 1.069 1.366 0.554 0.693 1.089 1.346 1.010 1.267

θ = .4
50 144 1.597 2.019 0.897 1.137 1.426 1.807 1.492 1.892

100 1.584 1.956 0.601 0.756 1.308 1.704 1.393 1.728
150 1.642 2.072 0.491 0.617 1.367 1.734 1.383 1.764
200 1.660 2.087 0.453 0.577 1.426 1.816 1.346 1.697
50 196 1.442 1.851 0.837 1.069 1.336 1.703 1.361 1.742

100 1.368 1.708 0.550 0.686 1.260 1.624 1.261 1.568
150 1.387 1.766 0.454 0.566 1.235 1.560 1.220 1.560
200 1.475 1.861 0.428 0.535 1.228 1.525 1.264 1.584

Note: B(β̂) is scaled bias of β̂ that equals the difference between the LS estimator β̂ in Bai [2009] and its true
value β0 multiplied by

√
NT . B(β̂gls), B(β̂∗

hac), and B(β̃∗
hac) are the scaled biases for the GLS estimator

in Bai and Liao [2017], the TA-SHAC estimator using the data-driven distance measure (dDik), and the TA-
SHAC estimator using the true distance measure (dTik). RMSE is the corresponding scaled root mean square
error for each estimator.
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Table 2: 95% empirical coverage rates of different estimators

TA-SHAC (dTik) TA-SHAC (dDik)

T N β̂ β̂gls β̃hac1 β̃hac2 β̃∗hac β̂hac1 β̂hac2 β̂∗hac

θ = 0
50 144 0.922 0.905 0.923 0.923 0.924 0.924 0.922 0.927

100 0.923 0.915 0.928 0.922 0.925 0.949 0.949 0.948
150 0.946 0.937 0.943 0.947 0.945 0.935 0.934 0.934
200 0.941 0.951 0.950 0.950 0.951 0.939 0.940 0.938
50 196 0.934 0.916 0.935 0.935 0.934 0.952 0.952 0.950

100 0.932 0.921 0.929 0.933 0.930 0.946 0.945 0.946
150 0.942 0.934 0.945 0.942 0.945 0.945 0.944 0.944
200 0.952 0.950 0.952 0.953 0.954 0.937 0.936 0.936

θ = .3
50 144 0.844 0.955 0.882 0.874 0.906 0.872 0.864 0.888

100 0.880 0.947 0.879 0.879 0.907 0.893 0.889 0.908
150 0.863 0.881 0.886 0.894 0.913 0.883 0.898 0.912
200 0.841 0.773 0.851 0.876 0.884 0.867 0.887 0.900
50 196 0.862 0.946 0.887 0.882 0.901 0.887 0.872 0.895

100 0.902 0.957 0.898 0.907 0.917 0.910 0.916 0.928
150 0.908 0.872 0.899 0.903 0.913 0.917 0.919 0.930
200 0.910 0.742 0.913 0.923 0.930 0.917 0.931 0.937

θ = .4
50 144 0.771 0.969 0.829 0.824 0.864 0.817 0.796 0.849

100 0.800 0.902 0.834 0.851 0.867 0.821 0.843 0.879
150 0.777 0.797 0.806 0.854 0.878 0.796 0.841 0.860
200 0.754 0.734 0.772 0.821 0.854 0.786 0.853 0.879
50 196 0.809 0.972 0.846 0.837 0.877 0.843 0.835 0.868

100 0.855 0.911 0.866 0.881 0.898 0.874 0.885 0.902
150 0.842 0.784 0.876 0.890 0.908 0.857 0.880 0.894
200 0.823 0.678 0.872 0.902 0.921 0.847 0.896 0.911

Note: β̂ is the IFE LS estimator in Bai [2009] and β̂gls is the GLS estimator in Bai and Liao [2017]. β̂hac1,
β̂hac2, and β̂∗

hac are TA-SHAC estimators using the data driven distance measure (dDik). For β̂hac1, we estimate
covariance matrix only without bias correction. For β̂hac2, we correct the bias only and use the conventional
covariance matrix estimator in (17). We correct the bias and use the robust covariance matrix in our procedure
for β̂∗

hac. β̃hac1, β̃hac2, and β̃∗
hac are TA-SHAC estimators using the true distance measure (dTik) with similar

interpretation.
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6 Empirical Application

In this section, we use two empirical examples to illustrate the application of the proposed

procedure. The first one is the well-known problem of the U.S. divorce rates affected by divorce

law reforms around the 1970s. The second one studies the effects of clean water and effective

sewerage systems on child mortality in the U.S.

6.1 Effects of divorce law reforms

During and after the 1970s, most states in the U.S. shifted from a consent divorce regime

to no-fault unilateral divorce laws. The new laws allowed people to seek a divorce without

the consent of their spouse. Economists are interested in analyzing the causal relationships

between the rise of divorce rates and divorce law reforms. Earlier studies include Allen [1992]

and Peters [1986]. Using the same cross-section data in 1979, Peters found that divorce rates

were unaffected by the switch to the unilateral law, while Allen found a significant impact.

Alternative results are presented in Friedberg [1998]. After controlling for fixed state and

year effects, as well as state-specific time trends in her specification, she found that states’ law

reforms have contributed to about one-sixth of the rise in state-level divorce rates since the

late 1960s. Based on her results, she concluded that the effect of unilateral divorce on divorce

behavior was permanent. In contrast, Wolfers [2006] found that the divorce rate rose sharply

in the first eight years after the divorce laws reform, but that this rise was reversed for the

subsequent nine to fourteen years. The model he studied was a standard fixed-effects panel

data model as following

yst = Tst + f(vs, t) + ust,

ust = δs + αt + εst,

(27)

where yst is the annual number of new divorces per thousand people in state s at time t, Tit is

the treatment effect of divorce law reform, and f(vs, t) is the time trend. For example, we have

f(vs, t) = vst for the linear trend. uit captures the unobserved heterogeneities, in which δs and
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αt are the state and the time fixed effects. εst is the idiosyncratic errors. The treatment effects

Tst is

Tst =1Ts≤t≤Ts+1β1 + 1Ts+2≤t≤Ts+3β2

+ · · ·+ 1Ts+12≤t≤Ts+13β7 + 1Ts+14≤tβ8,

(28)

where 1A is an indicator variable taking value one if the logical condition A is true and Ts is

the law reform year of state s.

The robustness of Wolfers [2006] has been doubted in two regards. The first one is the addi-

tive structure in ust may not be flexible enough to capture factors varying across time and state.

Since the state-level data he used consisting aggregates, the unobserved heterogeneities can

be affected by many omitting social and cultural factors (e.g., the stigma of divorce; religious

belief). Those factors are evolving, and we do not have data or appropriate proxy variables

to capture them. Second, the idiosyncratic errors are assumed to be cross-sectional indepen-

dent. However, cross-sectional correlations may exist in the error terms since the state-level

data includes all available cross-sectional units rather than random samples. To address this

issue, Kim and Oka [2013] applied the IFE model for the study, which can effectively control

the heterogeneity and cross-sectional correlations through a factor structure. In the model, ust

is expressed as

ust = λ′sFt + εst. (29)

The common factors Ft correspond to the principal components of ust, which dominant the

portion of divorce rates not explained by the included regressors. The loading vector λs stands

for the heterogeneous effect of Ft to each state. If we let λs = (1, δs)
′ and Ft = (αt, 1)′, then

uit in (27) and (29) are the same. Hence, the state and time fixed effects can be regarded as a

special case of interactive fixed effects.

To estimate the treatment effects (β1, · · · , β8) in (28), Kim and Oka [2013] adopted the

estimation and bias correction procedure in Bai [2009], which does not take the cross-sectional

dependence into account. Besides, they estimated the standard errors by the conventional es-

timator in (17), which also does not valid in the presence of cross-sectional correlation. Their
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results confirmed the significant effects of the first eight years of law reforms on the rise of

divorce rates, while the effects after eight years and beyond are insignificant. However, we ar-

gue that estimating the treatment effects without a proper bias correction procedure and robust

covariance matrix estimation may lead to biased estimates and invalid inference.

To correct the cross-sectional correlation bias and provide valid inference, we apply the

proposed method to the model of Kim and Oka [2013]. We use the same data as in Kim and

Oka [2013], which contains the divorces rates, state-level reform years, and binary regressors

from 1956 to 1988 over 48 states. We choose the same number of factors as Kim and Oka

[2013]. For the TA-SHAC estimator β̂∗hac, we employ the data-driven distance measure and

choose the bandwidth parameters by using the bootstrap-based bandwidth selection procedure

in section 4. In addition, we apply the GLS method proposed by Bai and Liao [2017] to the

study for comparison.

In Table 3, we report the effects of divorce law reform from different estimators with the log

of divorce rates as a dependent variable. The results show that both the TA-SHAC estimator

β̂∗hac and the GLS estimator β̂gls produce smaller estimates than the IFE LS estimator β̂ by

taking the cross-sectional correlation bias into account. All three estimators confirm that the

law reforms significantly contribute to the rise of the divorce rates for the first six years after the

law reforms. However, both β̂∗hac and β̂gls show that the effects of the law reforms on the divorce

rates for 7-8 years after the reforms are insignificant, while β̂ show that it is significant. They

also identify negative effects for the 9-14 years after the law reforms, which is in line with that

of Wolfers [2006]. Furthermore, β̂gls generates narrower confidence intervals than β̂∗hac and β̂,

since it is more efficient than other estimators. But the confidence intervals generated by β̂gls

may not be reliable as we showed in our simulation. In contrast, β̂∗hac has wider confidence

intervals than the other estimators, which is valid and robust to the cross-sectional dependence.

Overall, the proposed procedure can correct the bias for the IFE LS estimator β̂ and provides

valid and robust inference for the estimates.
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Table 3: Methods comparison in effects of divorce law reform: real data

β̂ β̂∗hac β̂gls

Estimate 95% CI Estimate 95% CI Estimate 95% CI

First 2 years 0.0183∗∗ [0.003, 0.034] 0.0156∗ [-0.003, 0.034] 0.0138∗∗ [0.000, 0.027]
3–4 years 0.0418∗∗∗ [0.020, 0.064] 0.0368∗∗∗ [0.013, 0.060] 0.0340∗∗∗ [0.014, 0.054]
5–6 years 0.0322∗∗ [0.004, 0.060] 0.0255∗∗ [-0.001, 0.052] 0.0249∗∗ [0.000, 0.050]
7–8 years 0.0293∗ [-0.005, 0.063] 0.0208 [-0.012, 0.054] 0.0152 [-0.015, 0.045]
9–10 years 0.0073 [-0.032, 0.047] -0.0034 [-0.043, 0.036] -0.0061 [-0.040, 0.028]
11–12 years 0.0092 [-0.037, 0.051] -0.0026 [-0.047, 0.041] -0.0078 [-0.044, 0.028]
13–14 years 0.0050 [-0.041, 0.051] -0.0079 [-0.057, 0.041] -0.0092 [-0.048, 0.029]
15 years+ 0.0306 [-0.020, 0.081] 0.0170 [-0.038, 0.072] 0.0093 [-0.033, 0.052]

Note: 95 % confidence intervals are reported. The number of factors r = 10.
∗ p < .1. ∗∗ p < .05. ∗∗∗ p < .01.

6.2 Effects of water and sewerage interventions

An essential question in public health is the cause of the sharp decrease in the U.S. and Mas-

sachusetts infant mortality from 1870 to 1930. An extensive literature has explored the associ-

ation between public health interventions and infant mortality. Among the interventions, some

researchers have focused on the roles of purer water in early twentieth-century cities in the U.S.

since clean water interventions made water safe for consumption and washing. One of the best-

identified research is Cutler and Miller [2005]. They studied the impact of water chlorination

and filtration on the death rate from waterborne diseases across 13 U.S. cities. Their results

suggested that improved water quality decreased 47 percent in log infant mortality from 1900

to 1936.

On the other hand, many U.S. metropolitan areas installed effective sewerage systems dur-

ing that time, which should also respond to child mortality decline. By removing excrement

from drinking water sources and reducing human contact with feces, sewerage reduces the

fecal-oral transmission of pathogens. Alsan and Goldin [2019] exploited the independent and

combined effects of clean water and effective sewerage systems on under-5 mortality in Mas-

sachusetts, 1880-1920. Their data are annual and include 60 municipalities in Massachusetts

for a period that predates national mortality statistics. For empirical strategy, they employed

28



a standard fixed-effects panel data model, which identified the two interventions together ac-

count for approximately one-third of the decline in log child mortality during the 41 years.

Specifically, they estimate

yit = µ+ β1Wit + β2Sit + β3(W ∗ S)it + θXit + uit,

uit = δi + αt + δit+ εit,

(30)

where i is a municipality and t is the year; yit is the log under-5 mortality rate; Wit and Sit are

indicator variables that equal to one if a municipality had adopted the safe water and sewerage

interventions by year t, respectively; Xit is a vector of time- and municipality-varying demo-

graphic controls. uit captures the unobserved heterogeneities, which includes municipality and

time fixed-effects and municipality-specific time trends δit. εit is the idiosyncratic errors. They

clustered the standard errors in their analysis at the municipality-level with 60 clusters. Since

they used the municipality-level data, the potential unobserved time-varying heterogeneity and

cross-sectional correlation in the idiosyncratic errors may affect the results. To check the ro-

bustness of their results, we first apply the IFE model for the study. That is, we re-express uit

in (30) as

uit = λ′iFt + εit, (31)

where Ft is a vector of factors that dominant the portion of child mortality rates not explained

by the included regressors, and the loading vector λi represents the heterogeneous effect of Ft

to each municipality. Note that if we let λi = (δi, 1, δi)
′ and Ft = (1, αt, t)

′, then uit in (30)

and (31) are the same. Hence, we choose three factors in the IFE model to include the original

model as a special case.

Then, we apply the proposed procedure to correct the bias and improve the inference of the

LS estimates. We use the same data as in Alsan and Goldin [2019], which contains the under-5

mortality rate, municipality-level water, sewerage interventions years, and demographic control

regressors from 1981 to 1920 over 60 municipalities. To construct a balanced panel, we drop

the data of Westwood since there are many missing observations, and we interpolate the data
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of Wellesley in 1980 and 1981 with its data in 1982. We also interpolate the missing values of

under-5 child mortality in Weston 1904 with its average value in 1903 and 1905, and 1917 with

its average value in 1916 and 1918. As a result, the interpolation creates a balanced panel that

contains 59 municipalities and 41 years. We employ the data-driven distance measure and the

bootstrap-based bandwidth selection procedure for the TA-SHAC estimators in the estimation.

In addition, we apply the GLS method for the study to compare with our method.

We report our results in Table 4. In Panel A, we use the same model as the original paper

with the balanced panel data we constructed. The results of Panel A and the original paper

are similar, which implies that the results of the original paper are not sensitive to the data we

adjusted. Panel B shows the results of the IFE model with the same adjusted data. Comparing

Panel A and Panel B results, we can see that the independent and combined effects of clean

water and effective sewerage system on under-5 mortality in Panel B are much smaller than

Panel A. For example, while the combination of sewerage and safe water treatments lowered

under-5 mortality by 26.6 log points in Panel A, it decreased to 13.9 log points in Panel B. The

reason is that the IFE model can more effectively control the heterogeneities and cross-sectional

correlation in the data than the standard fixed-effects model.

Panel C presents the estimated results by applied the proposed procedure. Comparing the

results in Panel B and Panel C, we can see that the estimation effects in Panel C are smaller than

in Panel B due to the bias correction. Also, some estimates of the independent or combined

effects of safe water and sewerage interventions change from statistically significant in Panel B

to statistically insignificant in Panel C. The estimates in Panel C have wider confidence intervals

than Panel B, which are valid and robust to cross-sectional dependence. The estimated effects

by the GLS method show in Panel D. The GLS estimator has smaller estimation effects and

narrower confidence intervals than the other estimators. The confidence intervals generated by

the GLS method may not be reliable, as we showed in our simulation before. In summary, by

applying the proposed method, we can correct the bias and provide valid and robust inferences

for the estimates.
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Table 4: Estimated effects of clean water and sewerage on child mortality

Panel A. Standard Fixed Effects

(1) (2) (3) (4) (5)

Safe water -0.127 -0.102 0.108
[-0.280, 0.026] [-0.252, 0.047] [-0.043, 0.258]

Sewerage -0.124∗∗∗ -0.106∗∗ -0.068
[-0.214, -0.033] [-0.194, -0.018] [-0.156, 0.021]

Interaction -0.239∗∗∗ -0.307∗∗∗

[-0.395 -0.084] [ -0.509, -0.106]

Panel B. Interactive Fixed Effects

(1) (2) (3) (4) (5)

Safe water -0.060∗∗∗ -0.051∗∗ 0.126∗∗∗

[-0.103, -0.017] [-0.096, -0.006] [0.055, 0.197]
Sewerage -0.052∗∗∗ -0.042∗∗ -0.003

[-0.092, -0.013] [-0.085, 0.001] [-0.045, 0.044]
Interaction -0.151∗∗∗ -0.262∗∗∗

[-0.198, -0.104] [-0.346, -0.177]

Panel C. TA-SHAC Estimation

(1) (2) (3) (4) (5)

Safe water -0.056 -0.048 0.119∗∗

[-0.126, 0.012] [-0.120, 0.022] [0.013, 0.225]
Sewerage -0.049∗ -0.039 -0.003

[-0.107, 0.009] [-0.100, 0.022] [-0.068, 0.062]
Interaction -0.147∗∗∗ -0.252∗∗∗

[-0.218, -0.076] [-0.376, -0.128]

Panel D. GLS Estimation

(1) (2) (3) (4) (5)

Safe water -0.021 -0.020 0.116∗∗∗

[-0.074, 0.033] [-0.075, 0.034] [0.028, 0.205]
Sewerage -0.024 -0.023 0.006

[-0.071, 0.023] [-0.072, 0.025] [-0.044, 0.058]
Interaction -0.100∗∗∗ -0.205∗∗∗

[-0.159, -0.040] [-0.310, -0.101]

Note: 95 % confidence intervals are reported. Interaction: interaction of safe water and sewerage. We use
three number of factors, which includes the standard fixed effects model in the original paper as a special
case.
∗ p < .1. ∗∗ p < .05. ∗∗∗ p < .01.
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7 Conclusion

This paper studies the estimation and inference of the panel data model with interactive fixed

effects. Under both large N and large T , Bai [2009] showed that the IFE LS estimator is
√
NT

consistent, but asymptotic bias exists in the presence of correlations and heteroskedasticity in

both dimensions. We propose an improved inference procedure for the IFE LS estimator in

the presence of cross-sectional dependence and heteroskedasticities. Our procedure involves

two parts: correcting the asymptotic bias of the IFE LS estimator and employing the cross-

sectional dependence robust covariance matrix estimator. To implement our procedure, we

develop a data-driven distance that does not rely on prior information and a bandwidth selection

procedure based on a cluster wild bootstrap method.
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Appendix: Proofs

We use the following facts throughout: T−1 ‖Xi‖2 = T−1
∑T

t=1 ‖Xit‖2 = Op(1) or T−1/2 ‖Xi‖ =

Op(1).Averaging over i, (TN)−1
∑N

i=1 ‖Xi‖2 = Op(1). Similarly, T−1/2 ‖F 0‖ = Op(1), T−1‖F̂‖2 =

r, T−1/2‖F̂‖ =
√
r, T−1 ‖X ′iF 0‖ = Op(1) and so forth. Throughout, we define δNT =

min[
√
N,
√
T ] so that δ2

NT = min[N, T ]. Note that ĴNT − JNT = op(1) holds if and only

if A′ĴNTA - A′JNTA for any A ∈ Rp. Therefore, without loss of generality, we assume ĴNT

is a scalar, i.e., p = 1.

Proof of Theorem 1

(a) Asymptotic Bias:

E(J̃NT )− JNT = O

(
1

dqn

)
.

Note that

E(J̃NT )− JNT

=
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

E(wiεitεktλk)K

(
dik
dn

)
− 1

NT

N∑
i=1

N∑
k=1

T∑
t=1

wiλk (Eεitεkt)

= − 1

NT

N∑
i=1

N∑
k=1

T∑
t=1

wiλkE (εitεkt)

[
1−K

(
dik
dn

)]

≤ − 1

dqn

(
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

‖wi‖‖λk‖‖Γik,t‖dqik

)1−K
(
dik
dn

)
(
dik
dn

)q


≤ −Kq

dqn

(
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

‖Γik,t‖dqik

)
+ o(1)

= O

(
1

dqn

)
, as N, T, dn →∞,

where wi = plim
[

(Xi−Vi)′F 0

T

] (
F 0′F 0

T

)−1 (
Λ′Λ
N

)−1
is a constant and we assume λk is determin-

istic instead of a random variable. We use the Assumption B7 in the last equation.
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(b) Asymptotic Variance:

J̃NT − E(J̃NT ) = Op

(√
`n
NT

)
= op(1).

We want to show that J̃NT − E(J̃NT ) = op(1). By definition, it is equivalent to show that

for any ∆ > 0,

P (|J̃NT − E(J̃NT )| > ∆)→ 0.

By Chebyshev’s inequality, we need to show that

P (|J̃NT − E(J̃NT )| > ∆)

≤ 1

∆2
E[J̃NT − E(J̃NT )]2 → 0.

We note that

E[J̃NT − E(J̃NT )]2

= E

[
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

K

(
dik
dn

)
wiλkεitεkt −

1

NT

N∑
i=1

N∑
k=1

T∑
t=1

K

(
dik
dn

)
E(wiλkεitεkt)

]2

= E

[
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

K

(
dik
dn

)
wiλk (εitεkt − Eεitεkt)

]2

=
1

N2T 2

N∑
i,k=1

N∑
a,b=1

T∑
s,t=1

K(
dik
dn

)K(
dab
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)(wiλk)(waλb)E
[
(εitεkt − Eεitεkt)(εasεbs − Eεasεbs)
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=

1

N2T 2
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)K(
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]
=

1

N2T 2
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)K(
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[
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1
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]

+ E(εitεas)E(εbsεkt) + E(εitεbs)E(εasεkt)
}

= A1 + A2 + A3.
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For A1, we use the linear representation of εit to have

Eεitεktεasεbs − E(εitεkt)E(εasεbs)− E(εitεas)E(εbsεkt)− E(εitεbs)E(εasεkt)

=
∞∑
`=1

γit,`γkt,`γas,`γbs,`(Ee
4
` − 3).

Thus, under Assumption B4 and B5

NT |A1| ≤
1

NT
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= O(1).

For A2,

NT
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Using the same argument, we can have

NT

`n
|A3| = O(1).

Combine the results above, we have

E[J̃NT − E(J̃NT )]2 = O

(
1

NT

)
+O

(
`n
NT

)
,
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which implies

J̃NT − E(J̃NT ) = Op

(√
`n
NT

)
= op(1),

as `n, N, T →∞ such that `n/NT → 0.

(c) Estimation Error:

ĴNT − J̃NT = op(1).

Note that

ĴNT − J̃NT =
1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

(ŵiλ̂kε̂itε̂kt − wiλkεitεkt)

]
K(

dik
dn

)

=
1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

(Xi − V̂i)′F̂
T

(
Λ̂′Λ̂

N

)−1

λ̂kε̂itε̂kt

− 1

N

N∑
i=1

N∑
k=1

(Xi − Vi)′F 0

T

(
F 0′F 0

T

)−1(
Λ′Λ

N

)−1

λkεitεkt

]
K(

dik
dn

).

We shall prove

B1 =
1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

X ′iF̂

T

(
Λ̂′Λ̂

N

)−1

λ̂kε̂itε̂kt

− 1

N

N∑
i=1

N∑
k=1

X ′iF
0

T

(
F 0′F 0

T

)−1(
Λ′Λ

N

)−1

λkεitεkt

]
K(

dik
dn

) = op(1).

and

B2 =
1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

V̂ ′i F̂

T

(
Λ̂′Λ̂

N

)−1

λ̂kε̂itε̂kt

− 1

N

N∑
i=1

N∑
k=1

V ′i F
0

T

(
F 0′F 0

T

)−1(
Λ′Λ

N

)−1

λkεitεkt

]
K(

dik
dn

) = op(1).

Consider B1. There are four items being estimated, namely F 0, Λ′Λ/N , λk, and εitεkt.

Using the identity âb̂ĉd̂− abcd = (â− a)b̂ĉd̂+ a(b̂− b)ĉd̂+ ab(ĉ− c) d̂+ abc(d̂− d), the first
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corresponding term is

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
i=1

N∑
k=1

X ′i

(
F̂ − F 0H

)
T

(
Λ̂′Λ̂

N

)−1

λ̂kε̂itε̂kt

∥∥∥∥∥∥
≤

∥∥∥F̂ − F 0H
∥∥∥

√
T

 1

T

T∑
t=1

∥∥∥∥∥ 1√
NT

N∑
i=1

Xiε̂it

∥∥∥∥∥
∥∥∥∥∥∥ 1√

N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kε̂kt

∥∥∥∥∥∥
 .

Since

ε̂it = εit +Xit(β̂ − β) +
(
F̂t −H ′F 0

t

)′
H−1λi + F̂ ′t

(
λ̂i −H−1λi

)
,

we first look at∥∥∥∥∥ 1√
NT

N∑
i=1

Xiε̂it

∥∥∥∥∥
=

∥∥∥∥∥ 1√
NT

N∑
i=1

Xi

(
εit +Xit(β̂ − β) +

(
F̂t −H ′Ft

)
H−1λi + F̂ ′t

(
λ̂i −H−1λi

))∥∥∥∥∥
≤

∥∥∥∥∥ 1√
NT

N∑
i=1

Xiεit

∥∥∥∥∥+

∥∥∥∥∥ 1√
NT

N∑
i=1

XiXit(β̂ − β)

∥∥∥∥∥
+

∥∥∥∥∥ 1√
NT

N∑
i=1

Xi

(
F̂t −H ′F 0

t

)′
H−1λi

∥∥∥∥∥+

∥∥∥∥∥ 1√
NT

N∑
i=1

XiF̂
′
t

(
λ̂i −H−1λi

)∥∥∥∥∥
= B11 +B12 +B13 +B14.

For B11,

∥∥∥∥∥ 1√
N

N∑
i=1

Xi√
T
εit

∥∥∥∥∥ =

(
1

N

N∑
i=1

N∑
k=1

(
‖Xi‖2

T

)
εitεkt

)1/2

= Op(1).
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For B12, by the Cauchy-Schwarz inequality,

∥∥∥∥∥ 1√
NT

N∑
i=1

XiXit(β̂ − β)

∥∥∥∥∥
≤
√
N

(
1

NT

N∑
i=1

‖Xi‖2

)1/2(
1

N

N∑
i=1

‖Xit‖2

)1/2

‖β̂ − β‖

=
√
NOp(‖β̂ − β‖) = Op(1).

For B13,

∥∥∥∥∥ 1√
NT

N∑
i=1

Xi

(
F̂t −H ′F 0

t

)′
H−1λi

∥∥∥∥∥
≤
√
N
∥∥∥F̂t −H ′F 0

t

∥∥∥( 1

N

N∑
i=1

‖Xi‖√
T

∥∥H−1λi
∥∥)

=
√
N
∥∥∥F̂t −H ′F 0

t

∥∥∥Op(1).

For B14,

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

XiF̂
′
t

(
λ̂i −H−1λi

)∥∥∥∥∥
≤
√
N‖F̂t‖

(
1

N

N∑
i=1

‖Xi‖√
T

∥∥∥(λ̂i −H−1λi

)∥∥∥)

=
√
N‖F̂t‖

(
Op(‖β̂ − β‖) +Op(δ

−1
NT )
)

= ‖F̂t‖Op(1).

For the last equality, we use the Lemma A.10 (ii) in Bai (2009) that

1

N

N∑
i=1

∥∥∥λ̂i −H−1λi

∥∥∥ = Op

(
δ−1
NT

)
+Op(‖β̂ − β‖).

In summary, we have

∥∥∥∥∥ 1√
NT

N∑
i=1

Xiε̂it

∥∥∥∥∥ ≤ √N ∥∥∥F̂t −H ′F 0
t

∥∥∥Op(1) + ‖F̂t‖Op(1).
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We next consider∥∥∥∥∥∥ 1√
N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kε̂kt

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1√
N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kεkt

∥∥∥∥∥∥+

∥∥∥∥∥∥ 1√
N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kXkt(β̂ − β)

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1√
N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂k

(
F̂t −H ′F 0

t

)′
H−1λk

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1√
N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kF̂
′
t

(
λ̂k −H−1λk

)∥∥∥∥∥∥
= C11 + C12 + C13 + C14.

For C11,

∥∥∥∥∥∥ 1√
N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kεkt

∥∥∥∥∥∥ = Op(1)

For C12, by the Cauchy-Schwarz inequality,

∥∥∥∥∥∥ 1√
N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kXkt(β̂ − β)

∥∥∥∥∥∥
≤
√
N

∥∥∥∥∥∥
(

Λ̂′Λ̂

N

)−1
∥∥∥∥∥∥
(

1

N

N∑
k=1

‖λ̂k‖2

)1/2(
1

N

N∑
k=1

‖Xkt‖2

)1/2

‖β̂ − β‖

=
√
NOp(‖β̂ − β‖) = Op(1).
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For C13,

∥∥∥∥∥∥ 1√
N

N∑
i=1

(
Λ̂′Λ̂

N

)−1

λ̂k

(
F̂t −H ′F 0

t

)′
H−1λk

∥∥∥∥∥∥
≤ 1√

N

N∑
k=1

∥∥∥∥∥∥
(

Λ̂′Λ̂

N

)−1
∥∥∥∥∥∥
∥∥∥λ̂k∥∥∥∥∥∥(F̂t −H ′F 0

t )
∥∥∥∥∥H−1λk

∥∥
=
√
N
∥∥∥(F̂t −H ′F 0

t )
∥∥∥Op(1).

For C14,

∥∥∥∥∥∥ 1√
N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kF̂
′
t

(
λ̂k −H−1λk

)∥∥∥∥∥∥
≤ 1√

N

N∑
k=1

∥∥∥∥∥∥
(

Λ̂′Λ̂

N

)−1
∥∥∥∥∥∥
∥∥∥λ̂k∥∥∥ ‖F̂t‖∥∥∥λ̂k −H−1λk

∥∥∥
= ‖F̂t‖

√
N
[
Op(‖β̂ − β‖) +Op(δ

−1
NT )
]

= ‖F̂t‖Op(1).

In summary, we have

∥∥∥∥∥∥ 1√
N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kε̂kt

∥∥∥∥∥∥ ≤ √N
∥∥∥(F̂t −H ′F 0

t )
∥∥∥Op(1) + ‖F̂t‖Op(1).

Therefore, we the first corresponding term is

∥∥∥∥∥∥ 1

NT

T∑
t=1

N∑
i=1

N∑
k=1

X ′i

(
F̂ − F 0H

)
T

(
Λ̂′Λ̂

N

)−1

λ̂kε̂itε̂kt

∥∥∥∥∥∥
≤

∥∥∥F̂ − F 0H
∥∥∥

√
T

 1

T

T∑
t=1

∥∥∥∥∥ 1√
NT

N∑
i=1

Xiε̂it

∥∥∥∥∥
∥∥∥∥∥∥ 1√

N

N∑
k=1

(
Λ̂′Λ̂

N

)−1

λ̂kε̂kt

∥∥∥∥∥∥


≤

∥∥∥F̂ − F 0H
∥∥∥

√
T

1

T

T∑
t=1

(√
N
∥∥∥F̂t −H ′F 0

t

∥∥∥Op(1) + ‖F̂t‖Op(1)
)2

= Op

(
δ−1
NT

)
+Op(‖β̂ − β‖) = op(1).
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For the last equality, we use the proposition A.1 (ii) in Bai (2009) that

1√
T

∥∥∥F̂ − F 0H
∥∥∥ = Op(‖β̂ − β‖) +Op(δ

−1
NT ).

The second corresponding term is

1

NT

T∑
t=1

N∑
i=1

N∑
k=1

X ′iF
0

T

(Λ̂′Λ̂

N

)−1

−H ′
(

Λ′Λ

N

)−1

H

 λ̂kε̂itε̂kt
=

1

T

T∑
t=1

( 1√
N

N∑
i=1

X ′iF
0

T
ε̂it

)(Λ̂′Λ̂

N

)−1

−H ′
(

Λ′Λ

N

)−1

H

( 1√
N

N∑
k=1

λ̂kε̂kt

) ,
where the term HH ′ arises in the interim and HH ′ − (F 0′F 0/T )−1 = Op(δ

−1
NT ) by Lemma

A.7 in Bai (2009). Let Q =

∥∥∥∥(Λ̂′Λ̂/N
)−1

−H ′ (Λ′Λ/N)−1H

∥∥∥∥ and Q = Op(‖β̂ − β‖) +

Op

(
δ−2
NT

)
= Op(δ

−1
NT ) by Lemma A.10 (iv) in Bai (2009). Then we have

∥∥∥∥∥ 1

T

T∑
t=1

[(
1√
N

N∑
k=1

λ̂kε̂kt

)
⊗

(
1√
N

N∑
i=1

X ′iF
0

T
ε̂it

)]
vec(Q)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

T

T∑
t=1

[(
1√
N

N∑
k=1

λ̂kε̂kt

)
⊗

(
1√
N

N∑
i=1

X ′iF
0

T
ε̂it

)]∥∥∥∥∥ vec(Q)

= Op(‖β̂ − β‖) +Op

(
δ−2
NT

)
= Op(δ

−1
NT ),

since ‖X ′iF 0/T‖ = Op(1).

The third corresponding term is given by

1

NT

T∑
t=1

N∑
i=1

N∑
k=1

X ′iF
0

T

(
Λ′Λ

N

)−1 (
λ̂k −H−1λk

)
ε̂itε̂kt

=
1

T

T∑
t=1

[(
1√
N

N∑
i=1

(
X ′iF

0

T

)(
Λ′Λ

N

)−1

ε̂it

)(
1√
N

N∑
k=1

(
λ̂k −H−1λk

)
ε̂kt

)]
.
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Let Ai = (X ′iF
0/T ) (Λ′Λ/N)−1. Then, we have

∥∥∥∥∥ 1

T

T∑
t=1

(
1√
N

N∑
i=1

Aiε̂it

)(
1√
N

N∑
k=1

(
λ̂k −H−1λk

)
ε̂kt

)∥∥∥∥∥ = op(1),

using the fact that ‖Ai‖ = Op(1) and

∥∥∥∥∥ 1√
N

N∑
k=1

(
λ̂k −H−1λk

)
ε̂kt

∥∥∥∥∥
≤

(
1

N

N∑
k=1

∥∥∥λ̂k −H−1λk

∥∥∥2

ε̂2
kt

)1/2

= op(1).

It is easy to show that the last corresponding term is equal to op(1) since

1

T

T∑
t=1

ε̂itε̂kt −
1

T

T∑
t=1

εitεkt = op(1).

In summary, B1 is equal to Op

(
δ−1
NT

)
= op(1). Next, consider B2. The only difference

between B1 and B2 is Xi replaced by V̂i. Let Gk = (F 0′F 0/T )
−1

(Λ′Λ/N)−1 λk. Then,

‖Gk‖ = Op(1). Thus it is sufficient to prove

1

NT

N∑
i=1

N∑
k=1

T∑
t=1

(
V̂i − Vi

)′
F 0

T
Gkεitεkt = op(1).

Since ∥∥∥∥∥∥∥
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

(
V̂i − Vi

)′
F 0

T
Gkεitεkt

∥∥∥∥∥∥∥
≤ 1

T

T∑
t=1

∥∥∥∥∥ 1√
NT

N∑
i=1

(
V̂i − Vi

)
εit

∥∥∥∥∥
∥∥∥∥∥ 1√

N

N∑
k=1

Gkεkt

∥∥∥∥∥ ‖F 0‖√
T
,

and, V̂i − Vi = 1
N

∑N
k=1(âik − aik)Xk, where
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âik − aik =
(
λ̂i −H−1λi

)′ (
Λ̂′Λ̂/N

)−1

λ̂k

+ λ′iH
′−1

[(
Λ̂′Λ̂/N

)−1

−H ′ (Λ′Λ/N)
−1
H

]
λ̂k

+ λ′i (Λ
′Λ/N)

−1
H
(
λ̂k −H−1λk

)
.

We have∥∥∥∥∥ 1√
NT

N∑
i=1

(
V̂i − Vi

)
εit

∥∥∥∥∥
≤

∥∥∥∥∥ 1

N
√
NT

N∑
i=1

N∑
k=1

(
λ̂i −H−1λi

)′ (
Λ̂′Λ̂/N

)−1

λ̂kXkεit

∥∥∥∥∥
+

∥∥∥∥∥ 1

N
√
NT

N∑
i=1

N∑
k=1

λ′iH
′−1

[(
Λ̂′Λ̂/N

)−1

−H ′ (Λ′Λ/N)
−1
H

]
λ̂kXkεit

∥∥∥∥∥
+

∥∥∥∥∥ 1

N
√
NT

N∑
i=1

N∑
k=1

λ′i (Λ
′Λ/N)

−1
H
(
λ̂k −H−1λk

)
Xkεit

∥∥∥∥∥
= D1 +D2 +D3.

We first consider,

∥∥∥∥∥ 1

N
√
NT

N∑
i=1

N∑
k=1

(
λ̂i −H−1λi

)′ (
Λ̂′Λ̂/N

)−1

λ̂kXkεit

∥∥∥∥∥
≤

∥∥∥∥∥ 1√
N

N∑
i=1

(
λ̂i −H−1λi

)
εit

∥∥∥∥∥∥∥∥Λ̂′Λ̂/N
∥∥∥−1

(
1

N

N∑
k=1

‖λk‖
∥∥∥∥ Xk√

T

∥∥∥∥
)

= op(1).

Next,

∥∥∥∥∥ 1

N
√
NT

N∑
i=1

N∑
k=1

λ′iH
′−1

[(
Λ̂′Λ̂/N

)−1

−H ′ (Λ′Λ/N)
−1
H

]
λ̂kXkεit

∥∥∥∥∥
≤

∥∥∥∥∥ 1√
N

N∑
i=1

λiεit

∥∥∥∥∥∥∥H−1
∥∥∥∥∥∥(Λ̂′Λ̂/N

)−1

−H ′ (Λ′Λ/N)
−1
H

∥∥∥∥
(

1

N

N∑
k=1

‖λk‖
∥∥∥∥ Xk√

T

∥∥∥∥
)

= Op

(
δ−2
NT

)
+Op(‖β̂ − β‖).
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Finally,

∥∥∥∥∥ 1

N
√
NT

N∑
i=1

N∑
k=1

λ′i (Λ
′Λ/N)

−1
H
(
λ̂k −H−1λk

)
Xkεit

∥∥∥∥∥
≤

∥∥∥∥∥ 1√
N

N∑
i=1

λiεit

∥∥∥∥∥
∥∥∥∥(Λ̂′Λ̂/N

)−1
∥∥∥∥ ‖H‖

(
1

N

N∑
k=1

∥∥∥λ̂k −H−1λk

∥∥∥∥∥∥∥ Xk√
T

∥∥∥∥
)

= Op

(
δ−1
NT

)
+Op(‖β̂ − β‖).

In summary, we have

∥∥∥∥∥ 1√
NT

N∑
i=1

(
V̂i − Vi

)
εit

∥∥∥∥∥ = Op

(
δ−1
NT

)
+Op(‖β̂ − β‖).

Thus, B2 is equal to Op

(
δ−1
NT

)
+ Op(‖β̂ − β‖) = op(1). Combining B1 and B2, we have

ĴNT − J̃NT = op(1).

Proof of Theorem 2

Recall

HZ = plim
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

E(εitεkt)ZitZ
′
kt.

Define

HNT =
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

E(εitεkt)E(ZitZ
′
kt).

then HZ = plimHNT and the TA-SHAC estimator for HNT is given by

ĤNT =
1

T

T∑
t=1

Ĥt with Ĥt =
1

N

N∑
i=1

N∑
k=1

ẐitẐ
′
ktε̂itε̂ktK

(
dik
dn

)
.
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To establish the consistency of ĤNT , we define the infeasible version of ĤNT as

H̃NT =
1

T

T∑
t=1

H̃t with Ĥt =
1

N

N∑
i=1

N∑
k=1

ZitZ
′
ktεitεktK

(
dik
dn

)
,

which is identical to ĤNT but is based on the true value of Zit and εit. Using H̃NT , the differ-

ence between ĤNT and HZ can be decomposed into three parts:

ĤNT −HNT = (ĤNT − H̃NT ) + (H̃NT − EH̃NT ) + (EH̃NT −HNT ).

The first term is due to the effect of estimation errors in the factor model. The second and third

terms represent the variance and bias of the infeasible estimator H̃NT . Note that ĤNT −HZ =

op(1) holds if and only if A′ĤNTA - A′HZA for any A ∈ Rp. Therefore, without loss of

generality, we assume ĤZ is a scalar, i.e., p = 1.

(a) Asymptotic Bias:

E(H̃NT )−HNT = O

(
1

dqn

)
.

Note that

E(H̃NT )−HZ

=
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

E(ZitZktεitεkt)K

(
dik
dn

)
− 1

NT

N∑
i=1

N∑
k=1

T∑
t=1

E(ZitZkt)E(εitεkt)

= − 1

NT

N∑
i=1

N∑
k=1

T∑
t=1

E(ZitZkt)E (εitεkt)

[
1−K

(
dik
dn

)]

≤ − 1

dqn

(
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

‖Γik,t‖dqik

)1−K
(
dik
dn

)
(
dik
dn

)q


≤ −Kq

dqn

(
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

‖Γik,t‖dqik

)
+ o(1)

= O

(
1

dqn

)
, as N, T, dn →∞.
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(b) Asymptotic Variance:

H̃NT − E(H̃NT ) = Op

(√
`N
NT

)
= op(1).

The proof is similar with J̃NT − E(J̃NT ) we showed before.

(c) Estimation Error:

ĤNT − H̃NT = op(1).

Note that

ĤNT − H̃NT =
1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

(ẐitẐktε̂itε̂kt − ZitZktεitεkt)

]
K(

dik
dn

)

=
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

ẐitẐkt(ε̂itε̂kt − εitεkt)K(
dik
dn

)

+
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

(ẐitẐkt − ZitZkt)εitεktK(
dik
dn

).

The first term is bounded by

(
1

NT

N∑
i=1

T∑
t=1

‖Zit‖4

)1/2(
1

NT

N∑
i=1

N∑
k=1

T∑
t=1

(ε̂itε̂kt − εitεkt)2

)1/2

,

so it is easy to show 1
NT

∑N
i=1

∑N
k=1

∑T
t=1(ε̂itε̂kt − εitεkt)2 = op(1). The second term is op(1)

that analyzed in Bai (2009). Thus ĤNT − H̃NT = op(1).
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