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Introduction 3

I Consider

Yit = X ′itβ + uit,

uit = λ′iFt + εit.

• Ft(r × 1): common factors; λi(r × 1): factor loadings;
r: number of factors, and assumed to be known.

• Xit is potentially correlated with λi or Ft alone, or both.
• εit is allowed to be weakly correlated in both dimensions.
• Model the unobservable common time-varying effects to

impact the cross-sectional units heterogeneously
⇒ Include the standard fixed effects model as a special case
but more flexible.

• Incidental parameters problem in estimation
⇒ Asymptotic bias and invaild inference.
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Why Use IFE? 4

I The causal relationships between divorce law reforms and the
rise of divorce rates in 1970s (e.g., Firedberg, 1998; Wolfers,
2006; Kim and Oka, 2013).

I Wolfers (2006) studied the model as

yst = Tst + f(vs, t) + ust,

ust = δs + αt + εst.

• Not flexible to capture unobserved time-varying factors
(e.g., the stigma of divorce; religious belief)
⇒ Large discrepancy between the OLS and WLS estimates.
• εst assumed to be cross-sectionally independent.
⇒ Inappropriate in practice. Need to use robust standard errors.

I The IFE model is robust to the weighing schemes and
provide a natural solution for robust standard errors.
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LS Estimator 5

I (β̂, F̂ , Λ̂) minimizes

SSR(β, F,Λ) =

N∑
i=1

(Yi −Xiβ − Fλi)′ (Yi −Xiβ − Fλi) ,

subject to F ′F/T = Ir and Λ′Λ being diagonal.

I Concentrating out Λ, the LS estimator for β given F is:

β̂(F ) =

(
N∑
i=1

X ′iMFXi

)−1 N∑
i=1

X ′iMFYi,

where MF = IT − F (F ′F )−1F ′.
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I Given β, the model reduces to a pure factor model, so we can
estimate F using PCA:[

1

NT

N∑
i=1

(Yi −Xiβ) (Yi −Xiβ)
′

]
F̂ = F̂ VNT ,

where VNT is a diagonal matrix that consists the r largest
eigenvalues of the matrix in the brackets and F̂ is

√
T times the

corresponding eigenvectors.

I The solution (β̂, F̂ ) can be obtained by iteration until

convergence. Given (β̂, F̂ ), we have Λ̂ = T−1(Y −Xβ̂)′F̂ .



Asymptotics 7

I Bai (2009) shows that as N,T →∞, under some regularity
assumptions and if T/N → ρ > 0,

√
NT

(
β̂ − β

)
d−→ N

(
ρ1/2B0 + ρ−1/2C0, H

−1
0 HZH

−1
0

)
.

where B0 and C0 arise from cross-sectional and serial
correlations and heteroskedasticities in εit ⇒ invalid inference.

I In the presence of serial correlation, we can correct the bias C0

by the truncated kernel method of Newey and West (1987).

I Goal: Developing a valid inference procedure under
cross-sectional correlation and heteroskedasticity, assuming no
serial correlation (C0 = 0).

• Correct the asymptotic bias B0.
• Employ a robust estimation for HZ .
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I The asymptotic bias B0 is the probability limit of BNT with

BNT = −H (F )
−1 1

N

N∑
i=1

N∑
k=1

wiλk

(
1

T

T∑
t=1

Eεitεkt

)
,

where

H(F ) =
1

NT

N∑
i=1

X ′iMFXi −
1

T

[
1

N2

N∑
i=1

N∑
k=1

X ′iMFXkaik

]
,

wi = plim

[
(Xi − Vi)′ F 0

T

](
F 0′F 0

T

)−1(
Λ′Λ

N

)−1
,

Vi =
1

N

N∑
k=1

aikXk, and aik = λ′i(Λ
′Λ/N)−1λk.
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Existing Methods 10

1. The CS-HAC estimator (Bai, 2009):

B̂CS = −Ĥ−10

1

nsub

nsub∑
i=1

nsub∑
k=1

ŵiλ̂k

(
1

T

T∑
t=1

ε̂itε̂kt

)
,

where H0 = plimH(F ); Ĥ0 and ŵi are the estimators of H0 and

wi with F , λi, and Λ replaced by F̂ , λ̂i, and Λ̂.

• Consistent as nsub/min{N,T} → 0.
• Hard to implement properly. Need to select nsub to

replicate the dependence structure of the whole sample.
• Performance highly depends on the sub-sample selection

and there is no practical guidance to select.



2. The GLS estimator (Bai and Liao, 2017):

β̂(Σ−1ε ) = argmin
β

T∑
t=1

(Yt −Xtβ − ΛFt) Σ−1ε (Yt −Xtβ − ΛFt) ,

where Σε = cov(εt), (N ×N). They assume Σε is sparse and
{εt : t ≥ 1} is serial independent.

• Advantages:

− More efficient than existing methods.
− Incidental parameters bias-free.

• Practical issues:

− Its inference is not stable in finite samples
⇒ Our simulation shows that its inference often produces
substantial size distortion in finite samples.

− Romanno and Wolf (2006); Angrist and Pischke (2010).
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Improved Inference Procedure 13

Our procedure improves the inference of β by correcting the
bias of β̂ and employing a robust covariance estimation.

1. Correcting the bias

I Recall

BNT =−H (F )
−1 1

N

N∑
i=1

N∑
k=1

wiλk

(
1

T

T∑
t=1

Eεitεkt

)
︸ ︷︷ ︸

=JNT

,

=−H (F )
−1
JNT .

I H (F ) is easy to estimate, our focus is on consistent estimation
of JNT .
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I We propose a TA-SHAC estimator to estimate JNT ,

ĴNT =
1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

K

(
dik

d
(1)
n

)
ŵiλ̂kε̂itε̂kt

]
︸ ︷︷ ︸

=Ĵt

=
1

T

T∑
t=1

Ĵt.

I K(·) is a real-valued kernel function. dik is the distance measure

between i and k and d
(1)
n is a bandwidth parameter.

I Ĵt is a standard spatial HAC estimator in the literature and ĴNT
can be viewed as a time average of Ĵt, t = 1, · · · , T.
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I Based on ĴNT , we can estimate BNT by

B̂NT = −H(F̂ )−1ĴNT .

I The bias-corrected estimator of β can be defined as

β̂† = β̂ − 1

N
B̂NT .



16

2. Robust covariance estimation

I Recall under cross-sectional dependence

√
NT

(
β̂ − β

)
d−→ N

(
ρ1/2B0, H

−1
0 HZH

−1
0

)
,

where HZ = plim 1
NT

∑N
i=1

∑N
k=1

∑T
t=1E(εitεkt)ZitZ

′
kt with

Zi = MF0Xi − 1
N

∑N
k=1 aikMF0Xk.

I HZ is conventional estimated as

ĤZ =
1

N

N∑
i=1

σ̂2
i

(
1

T

T∑
t=1

ẐitẐ
′
it

)
,

where σ̂2
i = 1

T

∑T
t=1 ε̂

2
it. Not valid in the presence cross-sectional

dependence.
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I Bai (2009) suggests partial sample estimator

ĤCS =
1

nsub

nsub∑
i=1

nsub∑
k=1

(
1

T

T∑
t=1

ẐitẐ
′
ktε̂itε̂kt

)
.

• Consistent as nsub/min{N,T} → 0.
• Hard to implement in practice.

I We find that we do not need to rely on a partial sample to
estimate HZ . We can estimate it by

H̃CS =
1

N

N∑
i=1

N∑
k=1

(
1

T

T∑
t=1

ẐitẐ
′
ktε̂itε̂kt

)
.
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I We propose an estimator of HZ using the spatial HAC
estimation method. It is given by

ĤNT =
1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

ẐitẐ
′
ktε̂itε̂ktKF

(
dik

d
(2)
n

)]
︸ ︷︷ ︸

Ĥt

=
1

T

T∑
t=1

Ĥt.

I If KF is a rectangle kernel, then our estimator ĤNT

includes H̃CS as a special case by choosing d
(2)
n large

enough.



Asymptotics 19

I To establish the consistency of ĴNT , we introduce an
infeasible estimator J̃NT ,

J̃NT =
1

T

T∑
t=1

[
1

N

N∑
i=1

N∑
k=1

K

(
dik

d
(1)
n

)
wiλkεitεkt

]
︸ ︷︷ ︸

=J̃t

=
1

T

T∑
t=1

J̃t.
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I We have

ĴNT−JNT = (ĴNT − J̃NT )︸ ︷︷ ︸
Estimation error

+ (J̃NT − EJ̃NT )︸ ︷︷ ︸
Variation

+ (EJ̃NT − JNT )︸ ︷︷ ︸
Bias

.

I We assume that εit has a linear representation:

εit =

∞∑
`=1

cit,`e`,

where {cit,`} are unknown constants and {e`} are iid
innovations.
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I We can rely on Andrews (1991), Kim and Sun (2011, 2013) to
show that

J̃NT − EJ̃NT = Op

(√
`n
NT

)
and EJ̃NT − JNT = O

(
1

dqn

)
,

where

`i =

N∑
k=1

1 {dik ≤ dn} and `n =
1

N

N∑
i=1

`i.

I Based on the arguments in Bai (2009), we can show that

ĴNT − J̃NT = op (1) .



Assumptions 22

I Assumption 1. (i) dik ≥ 0, dii = 0, and dik = dki, (ii) dik
is time invariant.

I Assumption 2. (i) The kernel K : R→ [−1, 1] satisfies
K(0) = 1,K(x) = K(−x),K(x) = 0 for |x| ≥ 1. (ii) For all
x1, x2 ∈ R there is a constant, cL < 0, such that

|K (x1)−K (x2)| ≤ cL |x1 − x2| .

I Assumption 3. e`
iid∼ (0, 1) and E(e4` ) ≤ ∞, for all `.
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I Assumption 4. (i) limN,T→∞
∑N

i=1

∑T
t=1 |γit,`| <∞ for

all `; (ii) limN,T→∞
∑∞

l=1 |γit,`| <∞ for all i and t; (iii)
‖wi‖ ≤ C for i = 1, · · · , N .

I Assumption 5. `i ≤ c``n for all i = 1, · · · , N with some
constant c`.

I Assumption 6. There exists a finite constant M such that

lim
N,T→∞

1

NT

N∑
i=1

N∑
k=1

T∑
t=1

‖Γik,t‖ dqik < M,

where Γik,t = E (εitεkt) .
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Theorem 1. Under the Assumptions in Bai (2009) and
Assumption 1-6, with dn, `n, N, T →∞ such that
`n/N, `n/T → 0 and T/N → ρ, we have ĴNT − JNT = op(1).

Theorem 2. Under the the Assumptions in Bai (2009) and
Assumption 1-6, with dn, `n, N, T →∞ such that
`n/N, `n/T → 0 and T/N → ρ, we have ĤNT −HZ = op(1).

Corollary 1. Under the Assumptions of Theorem 1 and 2,

√
NT (β̂† − β)√
Ĥ−10 ĤNT Ĥ

−1
0

d→ N(0, 1).



24

Theorem 1. Under the Assumptions in Bai (2009) and
Assumption 1-6, with dn, `n, N, T →∞ such that
`n/N, `n/T → 0 and T/N → ρ, we have ĴNT − JNT = op(1).
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Implementation 26

There are two major challenges in implementing our method:

I How to choose the distance measure?

• Transportation cost (Conley and Ligon, 2000)
• Economics/geographic distance (Pinkse et al., 2002), etc.
⇒ May not be available and appropriate.

I How to select the bandwidths jointly?

• Fixed bandwidth (Kelejian and Prucha, 2007)
• Asymptotic truncated MSE (Kim and Sun, 2011)
⇒ May not applicable to our estimators.



Data Driven Distance 27

I We define the distance that reflects the dependence structure
directly,

dik = |1/ρik| − 1.

where ρik = corr(εit, εkt). dik is unobservable but we can use the
sample counter part,

d̂ik = min {1/|ρ̂ik|, 100} − 1,

where ρ̂ik =
∑T
t=1 ε̂itε̂kt/

√∑T
t=1 ε̂

2
it

∑T
t=1 ε̂

2
kt.

• Mantegna (1998), Fernandez (2011), Kim (2020), etc.
• No need prior information for implementation.
• Does not satisfy triangle inequality.



Bandwidth Selection Procedure 28

I Kim and Sun (2017) use a simulation-based choice in
time-series kernel method to select two smoothing
parameters in their test procedure.

I How to replicate cross-sectional dependence?

• Silvia Goncalves (2011)
• Timothy Vogelsang (2012)
• Javier Hidalgo and Marcia Schafgans (2017)

I Cluster wild bootstrap approach: avoid to use the
parameter model in time series case.
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I We consider a bootstrap-based bandwidth selection procedure.

Let D(1)
nM = {d(1)n1 , · · · , d

(1)
nM} and D(2)

nS = {d(2)n1 , · · · , d
(2)
nS} be the

sets of d
(1)
n and d

(2)
n .

1. Estimate β̂, F̂t, Λ̂, and ε̂t = Yt −Xtβ̂ − Λ̂F̂t. (Bai, 2009)

2. Generate bootstrap sample Y ∗t based on

Y ∗t = Xtβ̂ + Λ̂F̂t + ε∗t with ε∗t = ε̂tξt, and ξt
iid∼ (0, 1)

(e.g. Rademacher distribution).

3. Estimate β̂∗, F̂ ∗t , Λ̂∗, and ε̂∗t . Construct the bootstrap

version of the bias estimator B̂∗NT (d
(1)
nm) with d

(1)
nm ∈ D(1)

nM .
4. Estimate the bootstrap version of the covariance matrix

estimator Ĥ∗NT (d
(2)
ns ) with d

(2)
ns ∈ D(2)

nS .
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Y ∗t = Xtβ̂ + Λ̂F̂t + ε∗t with ε∗t = ε̂tξt, and ξt
iid∼ (0, 1)

(e.g. Rademacher distribution).

3. Estimate β̂∗, F̂ ∗t , Λ̂∗, and ε̂∗t . Construct the bootstrap

version of the bias estimator B̂∗NT (d
(1)
nm) with d

(1)
nm ∈ D(1)

nM .

4. Estimate the bootstrap version of the covariance matrix

estimator Ĥ∗NT (d
(2)
ns ) with d

(2)
ns ∈ D(2)

nS .
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I We consider a bootstrap-based bandwidth selection procedure.
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5. Generate B bootstrap samples and compute the bootstrap
based t-test statistics:

t∗b(d
(1)
nm, d

(2)
ns ) =

β̂†∗

se(β̂∗)
, for b = 1, 2, · · · ,B,

with β̂†∗ = β̂∗ − 1

N
B∗NT

(
d(1)nm

)
and

se(β̂∗) =

√√√√H(F̂ ∗)−1Ĥ∗NT

(
d
(2)
ns

)
H(F̂ ∗)−1

NT
.
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6. Repeat Step 2 to Step 5 for each (d
(1)
nm, d

(2)
ns ) ∈ D(1)

nM

⊗
D(2)
nS .

Compute

V(d(1)nm, d
(2)
ns ) =

1

B

B∑
b=1

1(|t∗b(d(1)nm, d(2)ns )| > tα/2),

and select (d
(1∗)
nm , d

(2∗)
ns ) that solves

max
d
(1)
nm∈D(1)

nM ,d
(2)
nm∈D(2)

nM

V(d(1)nm, d
(2)
ns ), s.t. V(d(1)nm, d

(2)
ns ) ≤ α.
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I Consider the following DGP:

Yit = Xitβ + λ′iFt + εit,

Xit = µ+ cλ′iFt + ι′λi + ι′Ft + ηit, ι
′ = (1, 1);

Frt = ρFr,t−1 +
√

1− ρ2urt, r = 1, 2;

λir, ηit, urt
iid∼ N(0, 1).

I We set β = µ = c = 1 and ρ = 0.3. The number of common
factors is two, and is assumed to be known.
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I We generates cross-sectional dependent data using a
popular spatial MA model.

εt =
(
IN + θM1 + θ2M2

)
vt,

vt = (v1t, . . . , vNt)
′ , vit

iid∼ N(0, 1).

I M1 = [m1,ik]Ni,k=1 and M2 = [m2,ik]Ni,k=1 are (N ×N) spatial
weight matrices such that

m1,ik =

{
1 if dik = 1
0 if dik 6= 1

and m2,ik =

{
1 if dik =

√
2

0 if dik 6=
√

2
.
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Table: Scaled Bias and RMSE of different estimators

TA-SHAC (dT
ik) TA-SHAC (dD

ik)

T N B(β̂) RMSE B(β̂gls) RMSE B(β̃∗hac) RMSE B(β̂∗hac) RMSE

θ = .4
50 144 1.597 2.019 0.897 1.137 1.426 1.807 1.492 1.892
100 1.584 1.956 0.601 0.756 1.308 1.704 1.393 1.728
150 1.642 2.072 0.491 0.617 1.367 1.734 1.383 1.764
200 1.660 2.087 0.453 0.577 1.426 1.816 1.346 1.697
50 196 1.442 1.851 0.837 1.069 1.336 1.703 1.361 1.742
100 1.368 1.708 0.550 0.686 1.260 1.624 1.261 1.568
150 1.387 1.766 0.454 0.566 1.235 1.560 1.220 1.560
200 1.475 1.861 0.428 0.535 1.228 1.525 1.264 1.584

Note: Scaled bias equals the difference between each estimator and its true
value scaled by

√
NT . RMSE is the corresponding root mean square error

scaled by
√
NT . dTik denotes the true distance. dDik denotes the data driven

distance measure.



Table: 95% empirical coverage rates of different estimators

TA-SHAC (dT
ik) TA-SHAC (dD

ik)

T N β̂ β̂gls β̃hac1 β̃hac2 β̃∗hac β̂hac1 β̂hac2 β̂∗hac

θ = .4
50 144 0.771 0.969 0.829 0.824 0.864 0.817 0.796 0.849
100 0.800 0.902 0.834 0.851 0.867 0.821 0.843 0.879
150 0.777 0.797 0.806 0.854 0.878 0.796 0.841 0.860
200 0.754 0.734 0.772 0.821 0.854 0.786 0.853 0.879
50 196 0.809 0.972 0.846 0.837 0.877 0.843 0.835 0.868
100 0.855 0.911 0.866 0.881 0.898 0.874 0.885 0.902
150 0.842 0.784 0.876 0.890 0.908 0.857 0.880 0.894
200 0.823 0.678 0.872 0.902 0.921 0.847 0.896 0.911

Note: For β̂hac1, we estimate covariance matrix only by TA-SHAC without
bias correction. For β̂hac2, we correct the bias only by TA-SHAC. We
correct the bias and estimate the covariance matrix by TA-SHAC for β̂∗

hac.
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1. Effects of divorce law reforms

I Background: During and after 1970s, most of states in
U.S. shifted from a consent divorce regime to no-fault
unilateral divorce laws. The new laws allowed people to
seek a divorce without the consent of their spouse.

I Research question: the causal relationships between
divorce law reforms and divorce rates.
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I Literature:

• Peters (1986) suggested that divorce rates were unaffected
by the law reforms, while Allen (1992) found a significant
impact.

• After controlling for fixed state and year effects, as well as
state-specific time trends, Firedberg (1998) found that
states’ law reforms have contributed to one-sixth of the rise
and claimed the change was permanent.

• Wolfers (2006) confirmed the rise of divorce rates in the first
eight years after the law reform, but this rise was reversed
for the subsequent nine to fourteen year.
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I Specifically, Wolfers (2006) studied the model as

yst = Tst + f(vs, t) + ust,

ust = δs + αt + εst,

where yst is the annual divorce rates; f(vs, t) is the time
trend; δs and αt are the state and the time fixed effects.

I The treatment effects Tst is

Tst =1Ts≤t≤Ts+1β1 + 1Ts+2≤t≤Ts+3β2

+ · · ·+ 1Ts+12≤t≤Ts+13β7 + 1Ts+14≤tβ8,

where Ts is the law reform year of state s.
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I The robustness of Wolfers (2006) has been doubted since

• the additive structure in ust is not flexible to capture
factors varying across time and state (e.g. the stigma of
divorce; religious belief).

• εst is assumed to be cross-sectionally independent.

I Kim and Oka (2013) applied the IFE model, which ust is
expressed as

ust = λ′sFt + εst.

where Ft is principle components of uit, which dominant
the portion of divorce rates not explained by the included
regressors. λs stands for the heterogeneous effect of Ft to
each state.
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I Kim and Oka (2013) adopted the estimation and bias
correction procedure in Bai (2009)

• Not take the cross-sectional correlated errors into account.
• Estimated the standard errors by the conventional

estimator.

I Bai and Liao (2017) re-estimate the model of Kim and Oka
(2013) using the GLS method.

I We apply the proposed procedure to correct the
cross-sectional correlation bias and improve the inference of
the estimates.



Table: Methods comparison in effects of divorce law reform

β̂ β̂∗hac β̂gls

Estimate 95% CI Estimate 95% CI Estimate 95% CI

First 2 years 0.0183∗ [0.003, 0.034] 0.0156∗ [-0.003, 0.034] 0.0138∗∗ [0.000, 0.027]
3–4 years 0.0418∗∗∗ [0.020, 0.064] 0.0368∗∗∗ [0.013, 0.060] 0.0340∗∗∗ [0.014, 0.054]
5–6 years 0.0322∗∗ [0.004, 0.060] 0.0255∗∗ [-0.001, 0.052] 0.0249∗∗ [0.000, 0.050]
7–8 years 0.0293∗ [-0.005, 0.063] 0.0208 [-0.012, 0.054] 0.0152 [-0.015, 0.045]
9–10 years 0.0073 [-0.032, 0.047] -0.0034 [-0.043, 0.036] -0.0061 [-0.040, 0.028]
11–12 years 0.0092 [-0.037, 0.051] -0.0026 [-0.047, 0.041] -0.0078 [-0.044, 0.028]
13–14 years 0.0050 [-0.041, 0.051] -0.0079 [-0.057, 0.041] -0.0092 [-0.048, 0.029]
15 years+ 0.0306 [-0.020, 0.081] 0.0170 [-0.038, 0.072] 0.0093 [-0.033, 0.052]

Note: 95 % confidence intervals are reported. The number of factors r = 10.
∗ p < .1. ∗∗ p < .05. ∗∗∗ p < .01.
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2. Effects of water and sewerage interventions

I Background: From 1880 to 1920, when Boston
authorities developed a sewerage and water district, infant
mortality plummeted from around 1/5 to 1/16 white
infants, and deaths of noninfants under 5 years decreased
by a factor of seven in Massachusetts.

I Research question: the causal relationships between
water and sewerage interventions and child mortality.
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I Literature:

• Cutler and Miller (2015) studied the impact of water
chlorination and filtration on the death rate from
waterborne diseases across 13 US cities. Their results
suggest that improved water quality decreases 47 percent in
log infant mortality from 1900 to 1936.

• Alsan and Goldin (2019) exploited the independent and
combined effects of clean water and effective sewerage
systems on under-5 mortality in Massachusetts, 1880-1920.
They identified the two interventions together account for
approximately one-third of the decline in log child mortality
during the 41 years.
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I Specifically, Alsan and Goldin (2019) estimate

yit = µ+ β1Wit + β2Sit + β3(W ∗ S)it + ΩXit + uit,

uit = δi + αt + δit+ εit,

• i is municipality and t is year; yit is the log under-5
mortality rate. Xit is a vector of time- and
municipality-varying demographic controls.

• uit captures the unobserved heterogeneities, which includes
municipality and time fixed effects, municipality-specific
time trends.

• The standard errors are clustered at the municipality level
with 60 clusters in their analysis.
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I Since they used the municipality level data, the potential
unobserved heterogeneities and cross-sectional correlation
in the errors may affect the results.

I To check the robustness of their results, we first apply the
IFE model with uit expressed as

uit = λ′iFt + εit,

where Ft dominant the portion of child mortality rates not
explained by the included regressors. λi stands for the
heterogeneous effect of Ft to each municipality.
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I Then, we apply the proposed procedure to correct the bias
and provide valid inference for the interactive fixed effects
model.

I Note that if we let λi = (δi, 1, δi)
′ and Ft = (1, αt, t)

′, then
uit in above equations are the same. Hence, we choice three
factors in our model to include the original model as a
special case.

I Finally, we apply the GLS method for the study to
compare with our method.
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Table: Estimated effects of clean water and sewerage

Panel A. Standard Fixed Effects

(1) (2) (3) (4) (5)

Safe water -0.127 -0.102 0.108
[-0.280, 0.026] [-0.252, 0.047] [-0.043, 0.258]

Sewerage -0.124∗∗∗ -0.106∗∗ -0.068
[-0.214, -0.033] [-0.194, -0.018] [-0.156, 0.021]

Interaction -0.239∗∗∗ -0.307∗∗∗

[-0.395 -0.084] [ -0.509, -0.106]

Panel B. Interactive Fixed Effects

Safe water -0.060∗∗∗ -0.051∗∗ 0.126∗∗∗

[-0.103, -0.017] [-0.096, -0.006] [0.055, 0.197]
Sewerage -0.052∗∗∗ -0.042∗∗ -0.003

[-0.092, -0.013] [-0.085, 0.001] [-0.045, 0.044]
Interaction -0.151∗∗∗ -0.262∗∗∗

[-0.198, -0.104] [-0.346, -0.177]

Note: 95 % confidence intervals are reported.
∗ p < .1. ∗∗ p < .05. ∗∗∗ p < .01.



Table: Estimated effects of clean water and sewerage

Panel C. TA-SHAC Estimation

(1) (2) (3) (4) (5)

Safe water -0.056 -0.048 0.119∗∗

[-0.126, 0.012] [-0.120, 0.022] [0.013, 0.225]
Sewerage -0.049∗ -0.039 -0.003

[-0.107, 0.009] [-0.100, 0.022] [-0.068, 0.062]
Interaction -0.147∗∗∗ -0.252∗∗∗

[-0.218, -0.076] [-0.376, -0.128]

Panel D. GLS Estimation

Safe water -0.021 -0.020 0.116∗∗∗

[-0.074, 0.033] [-0.075, 0.034] [0.028, 0.205]
Sewerage -0.024 -0.023 0.006

[-0.071, 0.023] [-0.072, 0.025] [-0.044, 0.058]
Interaction -0.100∗∗∗ -0.205∗∗∗

[-0.159, -0.040] [-0.310, -0.101]

Note: 95 % confidence intervals are reported.
∗ p < .1. ∗∗ p < .05. ∗∗∗ p < .01.
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1. We propose an improved inference procedure for the IFE
model in the presence of cross-sectional dependence and
heteroskedasticity.

2. We prove the validity of the proposed procedure in the
asymptotic sense.

3. To implement our approach, we develop a data driven
distance that does not rely on prior information and a
bandwidth selection procedure based on a cluster wild
bootstrap method.

4. We show that our procedure performs well in simulation
with finite samples.


