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1 Introduction

With the more and more data that collected by government and private firms, economists have

an opportunity to achieve a better estimation of economic effects and outcomes, using of these

newly available large data sets on their researches. These large data sets often characterize

as the dimension of variables that have the same order as, or possibly even larger than, the

sample size. Handling such large and complex data sets was a challenge to economists and

econometricians, however. The reason is that the classical asymptotic theories and standard

econometric methods may not be applicable or even break down in such regimes. Thus, we

need to develop new theories as well as new methods. One of the core methods for handling

large data matrices and high dimensional data sets is through factor analysis. It uses a few latent

factors to capture the variations of a large number of economic variables in a high dimensional

data set, with wide applications in macroeconomics, finance, and other areas. For example,

[25] [26] [27] use diffusion indices (similar as factors) constructed from a large number of

macroeconomic series to forecast inflation. [9] measure the effects of monetary policies using

a factor-augmented vector auto-regressive vector (FAVAR) approach. [20] consider factors as

conditioning information to discuss the conditional mean and conditional volatility of excess

stock market returns.

A critical question and also one of the big challenges in factor analysis is to estimate the

number of factors. In the classical factor analysis setting, we assume that the cross-section

units N is fixed with a relatively large number of time periods T . In such a setting, classical

methods to estimate the number of factors includes the likelihood ratio test [19] [8] [4], scree

test [10] [11], Kaiser’s rule [17], and parallel analysis (PA) [15]. Those methods can not be

applied to high dimensional data in which both N and T →∞, however. In high dimensional

regime, factors can be classified into strong and weak factors according to their strengths and

assumptions. Some of the most popular methods for estimating the number of strong factors

are the information criteria based methods (IC) developed by Bai and Ng [?], the eigenvalue

difference based method (ED) proposed by Onatski [22] and the eigenvalue ratio based method
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(ER) developed by Ahn and Horenstein [1]. These methods for selecting the number of strong

factors, however, may fail to detect weak factors in a high dimensional data set. For weak

factor estimation, Nadakuditi and Edelman [21] proposed an information criteria based method

(NE) to estimate the number of detectable weak factors in a high dimensional data set with

white noise. Instead of estimating the number of detectable weak factors, Owen and Wang [24]

developed a bi-cross-validation based method (BCV) to estimate the number of useful weak

factors in a high dimensional data set with heteroscedastic noise.

Overall, most methods for choosing the number of strong and weak factors in a high di-

mensional data set are based on the results from random matrix theory (RMT), which studies

the distribution of sample eigenvalues and requires i.i.d and gaussian assumption on the error

terms in the factor model. These restrictions may not appropriate when we want to apply those

methods in practice. Hence, this paper aims to show that those methods are not robust by sim-

ulation when the error terms in the factor model are serially and cross-sectionally correlated

or have non-gaussian distributions. Our simulation results provide useful recommendations to

applied users for how to choose the estimation method in dealing with different types of data.

2 Basic factor model and identification

Factor analysis is based on a model that separates the observed data into an unobserved system-

atic part (signal part) and an unobserved error part (noise part). The systematic part captures

the main information of the data so that we want to separate it from noise part. Specifically,

let Yit be the observed data for the i-th cross-section unit at time t, for i = 1, 2, · · · , N and

t = 1, · · · , T . The factor model for Yit is given by

Yit = L
′

iFt + eit, i = 1, . . . , N, t = 1, . . . , T, (2.1)

where Ft is a (r0 × 1) vector of common factors, Li is a (r0 × 1) vector of loadings associated

with Ft, and eit is the idiosyncratic component (noise part) of Yit. The number of true factors

in the model is r0. The product of L′
iFt is called the common component (signal part) of Yit.
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The factors, their loadings, as well as the idiosyncratic errors are not observable. (2.1) can also

be represented in a matirx form as

Yt = LFt + et, (2.2)

with Yt = (Y1t, Y2t, · · · , YNt)
′, L = (L1, L2, · · · , LN)′ ∈ RN×r0 , and et = (e1t, e2t, · · · , eNt)

′.

Note that in (2.2), L and Ft can not be identified from the productL′Ft since we haveL′RR−1Ft

for any r0 × r0 invertible matrix R, and R has r20 free parameters. Thus, in order to identify

L and Ft, we need at least r20 restrictions. One common constraint to make L identifiable up

to rotation is to assume cov(Ft) = Ir. This normalization on Ft implies that the latent factors

are uncorrelated to each other, which gives r0(r0 + 1)/2 restrictions since a symmetric matrix

contains r0(r0 + 1)/2 free parameters. To eliminate the rotation uncertainty, we can further

assuming that LL′ is diagonal with distinct entries, which contains r0(r0 − 1)/2 restrictions.

Together, we have exactly r20 restrictions on L and Ft. Note that there are many other ways to

constraint L and Ft for identification. One can refer to [6] and [3] for more details.

In classical factor analysis, we assume fixed T and large N (panel studies) or fixed N and

large T (multivariate time series models). In contrast, the high dimensional factor analysis char-

acterizes as both large cross-section units N and large time dimensions T , and N is possibly

much larger than T . Such a high dimensional framework greatly expands the application of the

factor models into more realistic and modern data-rich economic environments. For example,

in macroeconomics, Yit represents the GDP growth rate for country i in period t, Ft is a vector

of common shocks, Li is the heterogeneous impact of the shocks, and eit is the country-specific

growth rate. In finance, Yit is the return for asset i in period t, Ft is vector of systematic risks,

Li is the exposure to the factor risks, and eit is the idiosyncratic return [5].

Note that, in this paper, we only consider the static factor model, where the relationship

between observed data Yit and its corresponding latent factor Ft is static. For econometrics

applications, there are more methods to estimate the number of factors for dynamic factor

models such as [2] [13] [14] , which allow Yt to depend also on ft with lags in time. Such

dependency models are beyond the scope of this paper.
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3 Literature review

Here we review the most commonly used methods for estimating the number of factors in a high

dimensional data set. We begin with some recently developed methods from the econometrics

community for choosing the number of strong factors. Then we consider a source of RMT

based methods that are designed to choose the number of weak factors. Before introducing

those methods, let’s first briefly go over the strong and weak factor assumptions in the literature.

3.1 Strong and weak factor assumptions

Assuming factors Ft and noise et are uncorrelated and have zero mean, and normalization

E(FtF
′
t ) = Ir for identification, then the population covariance matrix of the factor model

(2.2) can be expressed as

ΣY = LL
′
+ Σe, (3.1)

where ΣY and Σe are the N ×N population covariance matrix of Yt and et, respectively.

Assumption 3.1.1. (Strong Factor assumption)

For (3.1), we assumed that L
′
L/N → ΣL for some r0 × r0 positive definite matrices ΣL and

all the eigenvalues of Σe are bounded as N, T →∞.

This is a standard assumption for factor models. Under this assumption, the top r0 eigenvalues

of ΣY are diverge at the rate O(N) while the rest of its eigenvalues are bounded as N, T →∞.

It ensures that PCA or MLE estimators for estimating factors and corresponding loadings in a

factor model are consistent. It is also the critical assumption for those methods to consistently

estimate the number of strong factors as N, T →∞.

Assumption 3.1.2. (Weak Factor assumption)

In contrast to strong factors, for the weak factors, we assumed that L
′
L → ΣL instead of

L
′
L/N → ΣL and all the eigenvalues of Σe are bounded as N, T →∞.

Under this assumption, all the eigenvalues of ΣY are bounded as N, T → ∞ and PCA or

MLE estimators for estimating factors and corresponding loadings in a factor model are not
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consistent. We can illustrate this by a simple example. For the basic factor model (2.1) we

defined before, we can assume eit are i.i.d with mean zero and variance σ2 and let r0 = 1 for

simplicity. If Li is known, then the OLS estimator for Ft is

F̂t =

∑N
i=1 LiYit∑N
i=1 L

2
i

= Ft +

∑N
i=1 Lieit∑N
i=1 L

2
i

,

so we have E(F̂t) = Ft and Var(F̂t) = σ2/
∑N

i=1 L
2
i . Hence, for F̂t to be consistent, we need∑N

i=1 L
2
i → ∞ (the strong factor assumption) such that P(|F̂t − Ft| > δ) ≤ Var(F̂t)/δ

2 → 0

as N →∞.

There are several reasons why we need to estimate the number of weak factors except for

strong ones. First, in many real finance and macroeconomics data sets where both N and T are

large, the empirical observations show that the eigenvalues of the sample covariance matrices

of these data sets do not obviously separate into groups of large and small eigenvalues. We

show the empirical evidence by collecting the real data in the Appendix A. Second, [24] show

that the estimation error for recovering the common components (signal part) in (2.2) will

decrease by including useful weak factors in the estimation. Third, as [12] showed, if we

assume a factor structure for asset returns, an asset’s risk premium is approximately equal to

a linear combination of its factor loadings. The approximation error goes arbitrarily large as

the number of assets increases, however, if we ignore relatively weakly influential factors from

consideration.

3.2 Method for estimating strong factors

There are many methods to consistently estimate the number of factors under strong factor

assumption as N, T → ∞. Some of the most popular methods are the information criteria

based methods (IC) developed by Bai and Ng [?]. Let L̂pc
r and F̂ pc

r be the PCA estimators

for loadings and factors (for the details of using PCA in factor analysis, please refer to the

Appendix B). Define

V (r) =
1

NT

∥∥∥Y − L̂pc
r F̂

pc
r

∥∥∥2
F
, (3.2)
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and the following loss function:

IC(r) = V (r) + rg(N, T ) or log(V (r)) + rg(N, T ), (3.3)

where the penalty function g(N, T ) satisfies two condition: (i) g(N, T )→ 0, and (ii) C2
NTg(N, T )

→ ∞ as N, T → ∞, where CNT = min{
√
N,
√
T}. Define the estimator for the number of

factors as r̂IC = argmin0≤r≤rmax
IC(k). Then the consistency: r̂IC

p→ r0 , as N, T → ∞,

can be established under the strong factor assumption. We take this method as an example and

explain why the strong factor assumption is critical in the Appendix C.

The other popular methods for estimating the number of strong factors in a high dimensional

data set are the ED and ER methods we introduced before. Specifically, the ED estimator is

defined as

r̂ED = max {r ≤ rmax : λr − λr+1 ≥ δ} ,

where δ is some fixed number, λi is the i-th largest eigenvalue of Σ̂Y . This method estimates the

number of factors by exploiting the structure of idiosyncratic terms using the results from RMT.

It explicitly allows serially and cross-sectionally correlated error terms in the factor model in

its assumptions. An advantage of this estimator comparing with the IC estimator [?] is that the

consistency of the ED estimator can allow for much weaker strength of the factors: instead of

growing in the order of O(N), the smallest eigenvalue of L′L are just required to diverge in

probability as N →∞. The ER estimator is defined as

r̂ER = argmin0≤r≤rmax
λr/λr+1,

with λ0 =
∑min(N,T )

r=1 λr/ log min(N, T ). The intuition for this method to work is very simple:

based on strong factor assumption, for any r 6= r0 the ratio λr/λr+1 converges to O(1) as

N, T →∞, while the the ratio λr0/λr0+1 diverges to infinity.

Remark. To use r̂IC , r̂ED and r̂ER, we need to determine the upper bound rmax for r. However,

there is no theoretical result to guide choosing rmax.
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3.3 Methods for estimating weak factors

Instead of assuming L′
L/N → ΣL for strong factors, it is assumed that L′

L→ ΣL as N, T →

∞ for weak factors. The results from random matrix theory (RMT) [18] show that, even for

white noise case Σe = σ2IN in (3.1), PCA or MLE estimators of the loadings and factors are

inconsistent as N, T → ∞. Specifically, there exists a phase transition phenomenon in the

limit: if the k-th largest eigenvalue of population covariance matrix ΣY less than the threshold

(
√
N/T+1)σ2, it has little chance to detect of the k-th factor using PCA or MLE as T,N →∞.

Define the number of detectable factors as #{i ≤ N : ξi > (
√
N/T + 1)σ2}, where ξi is the

i-th largest eigenvalue of the population covariance matrix ΣY , then one goal is to estimate the

number of detectable factors.

Nadakuditi and Edelman [21] developed an information criteria based method (NE) to es-

timate the number of detectable factors in a high dimensional data set with white noise using

the results from RMT, which studies the distribution of the sample eigenvalues. Specifically,

for fixed N and large T , Anderson and Rubin [4] characterized the distribution of the sample

eigenvalues by large sample asymptotics. Their analysis suggests that the sample eigenvalues

will be symmetrically centered around the population eigenvalues. This is not true when the

dimensionality is large and the sample size is relatively small, however. New analytical results

from RMT can precisely describe the spreading of the sample eigenvalues in the high dimen-

sional regime. The idea of the NE method is that they use the distributional properties of the

signal-free (r = 0) sample eigenvalues to approximate the distributional properties of theN−r

sample eigenvalues in Σ̂Y , assuming the number of factors is r and r � N . The NE estimator

is defined as

r̂NE = arg min
0≤r<min(N,T )

{
β

4

[
T

N

]2
t2r + 2(r + 1)

}
,

where

tr =

(N − r)
∑N

i=r+1 λ
2
i(∑N

i=r+1 λi

)2 − (1 +
N

T

)N − ( 2

β
− 1

)
N

T
.
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Instead of estimating the number of detectable factors, one may prefer estimating the num-

ber of useful factors (including strong and useful weak factors). The number of useful factors

can be used to recover an underlying signal matrix X = LF in the factor model more precisely

than using the true number of factors or detectable factors. Owen and Wang [24] proposed a

method to estimate the number of useful factors based on bi-cross-validation, using randomly

held-out submatrices of the data matrix. Their results are simulation based using guidance from

random matrix theory (RMT). Specifically, their model is defined as:

Y = X + Σ
1
2E = LF + Σ

1
2E, (3.4)

where X ∈ RN×T (signal matrix) is a product of loading matrix L ∈ RN×r0 and factor matrix

F ∈ Rr0×T , and r0 is the true number of factor. The noise matrix E ∈ RN×T with entries

eit
iid∼ N (0, 1). The variance of each cross-section unit is given by Σ = diag(σ2

1, σ
2
2, · · ·σ2

N).

The goal is to recover the signal matrix X despite the heteroscedastic noise using the criteria:

ErrX(X̂) = E
(
‖X̂ −X‖2F

)
. (3.5)

Their algorithm for recovering the signal matrixX has two steps. First, they devised early stop-

ping alternation (ESA) method to estimate X given the number of optimal factors r∗. Second,

they proposed bi-cross-validation (BCV) method to estimate the number of optimal factors r∗

based on the ESA method. For BCV method, the data matrix Y is partitioned into four blocks

by randomly select N0 rows and T0 columns as the held-out block as below

Y =

 Y00 Y01

Y10 Y11

 ,

where Y00 is the selectedN0×T0 held-out block, and Y01, Y10, and Y11 are the other three held-in

blocks. Correspondingly, X and Σ can be partitioned into four parts. The idea of BCV method

is that, for each candidate r, we first use the three held-in blocks to estimate the held-out block
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X00 (corresponding to Y00 in the factor model) and then select the optimal r∗ by minimizing

the BCV estimated prediction error, which is defined as

E
(

P̂Er (Y00)
)

= E
{

1

N0T0

∥∥∥Y00 − X̂00(r)
∥∥∥2
F

}
. (3.6)

Remark. The randomness of (3.6) comes from the random partition of the original data matrix.

4 Issue of non-robustness and simulation design

As we have introduced before, most methods (ED, NE, and BCV) for estimating the number

of factors are based on the results from random matrix theory (RMT), which studies the dis-

tribution of sample eigenvalues and requires i.i.d and gaussian assumption on the error terms

in the factor model. These restrictions may not appropriate when we want to apply them in

practice. The purpose of this simulation design is to show that all of those methods we have

discussed before are not robust when the error terms in the factor model are serially and cross-

sectionally correlated or have non-gaussian distributions. We consider the five representative

methods reviewed in Section 3.

4.1 Strong factors only

In this section, we only generate strong factors in our data generating process (DGP). We ap-

ply all of those methods (IC2, ED, ER, NE, and BCV) for estimating the number of factors in

the factor model with serially, cross-sectionally correlated, or non-gaussian error terms. Note

that IC2 is one of the six criterions proposed by [?] for choosing the number of strong factors.

Serially and cross-sectionally correlated error terms in the factor model tend to cause overesti-

mating the number of factors. Hence, we choose IC2 simply because it uses the largest penalty

among the six criterions, so the probability of overestimation is the smallest.

When factors are “strong”, we know that the IC2 method [?] [27] allows weak serial and

cross-sectional dependence in the error terms for large N and T . This is because the depen-
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dence of the factor structure will eventually dominate any weak dependence in the error terms

asymptotically. The IC2 method does not allow high serial and cross-sectional dependence in

error terms, however. Since in this case, the eigenvalues of the covariance matrix of the error

terms may not be bounded as N, T → ∞, which violates the strong factor assumption and

causes overestimation. The ED and ER methods are designed to estimate the number of strong

factors. The assumptions of ED and ER methods allow the error terms in the factor model to be

serially and cross-sectionally correlated. The NE and BCV methods are designed to estimate

the number of strong and weak factors in a high dimensional set data with white and het-

eroscedastic noise based on the results from RMT, which require i.i.d and gaussian assumption

on the error terms in the factor model.

In this simulation, we are going to show that those methods are not robust when the er-

ror terms in the factor model are high serially and cross-sectionally correlated, or have non-

gaussian distributions in finite samples. This simulation design follows the design of [7] and

[23]. Specifically, we consider the following DGP:

Yit =
r∑

j=1

λijFtj + eit, where

λij, Ftj
iid∼ N (0, 1),

eit = ρ1eit−1 + (1− ρ21)1/2ξit,

ξit = ρ2ξi−1,t + (1− ρ22)1/2εit, εit
iid∼ N (0, 1).

(4.1)

We let r = 2, and consider the three cases for eit below:

Case I: high serial correlation only, ρ1 = 0.9 and ρ2 = 0;

Case II: mild cross-sectional correlation only, ρ1 = 0 and ρ2 = 0.5;

Case III: non-guassion distributions only, ρ1 = ρ2 = 0 with four types of distributions for eit:

normal, gamma, lognormal and chi-square with mean zero and variance 0.5.
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4.2 Useful weak factor only and mixed strong and useful weak factors

In this section, we generate strong and useful weak factors in our DGP with three scenarios. In

the first scenario, we only generate six useful weak factors. In the second scenario, we mixed

five useful weak factors with one strong factor. In the third scenario, we mixed three useful

weak factors with three strong factors. We then apply all of those five methods (IC2, ED, ER,

NE, and BCV) for estimating the number of factors in the factor model with serially, cross-

sectionally correlated, or non-guassian error terms. This simulation design follows the design

of [24] and [23]. Consider the factor model as:

Y = X + Σ
1
2E

= Σ
1
2 (Σ−

1
2X + E) = Σ

1
2 (
√
TÛD̂V̂

′
+ E),

(4.2)

where
√
TÛD̂V̂

′ is the singular value decomposition (SVD) for Σ−
1
2X with Û ∈ RN×min(N,T ),

V̂ ∈ RT×min(N,T ), D̂ = diag(d̂1, d̂2, · · · , d̂min(N,T )), Û ′
Û = V̂

′
V̂ = Imin(N,T ), and d̂1 ≥ d̂2 ≥

, · · · ,≥ d̂min(N,T ). For the weighted signal matrix Σ−
1
2X =

√
T ÛD̂V̂

′ , we can generate the

factors with different strengths for the three scenarios by specified the entries in D̂. For the

error term Σ
1
2E in (4.2), assuming homoscedastical noise Σ = IN , we consider three cases

below:

Case I: high serial correlation only,

E = (eit)N×T : eit = ρ1eit−1 + (1− ρ21)1/2εit, εit
iid∼ N (0, 1) with ρ1 = 0.9;

Case II: mild cross-sectional correlation only,

E = (eit)N×T : eit = ρ2ei−1,t + (1− ρ22)1/2εit, εit
iid∼ N (0, 1) with ρ2 = 0.5;

Case III: non-guassion distributions only,

E = (eitj)N×T : eit is i.i.d with three types of non-guassion distributions: gamma, log-normal

and chi-square with mean zero and variance 0.5.

Remark. In the simulation results, we use E = (eit)N×T : eit
iid∼ N (0, 1) as our benchmark

since the number of weak factors are hard to estimate precisely in finite small samples.
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5 Numerical results and discussion

5.1 Results for estimating strong factors only

Table 1 shows the finite sample performances of those five methods we discussed on choosing

the number of strong factors in the factor model with white, high serially correlated, or mild

cross-sectionally correlated error terms. We take 1000 replications for each pair of (N, T ) with

a specified type of noise in the simulation. From table 1, we can see that all of those five

methods can almost precisely choose the number of factors (see the columns 3-5) when the

factors are “strong” with white noise only in the factor model. However, when the error terms

are high serially correlated, the IC2, NE, and BCV methods will almost inevitably overestimate

the number of factors (see the columns 6-8). The ER and ED methods perform quite well when

T is large. The results are consistent with the theory since the assumptions of the ER and ED

methods allow serially and cross-sectionally error terms in the factor model as N, T →∞.

Also, when the error terms are mild cross-sectionally correlated, the IC2 method tends to

overestimate the number of factors when N is small but it performs quite well when N is

large (see the columns 9-11). It is consistent with the theory since the assumptions of the IC2

method allow weak serially and cross-sectionally correlated error terms in the factor model as

N, T → ∞. The ER and ED methods are robust to cross-sectionally correlated error terms

in factor model for all pairs of N and T in the results of our simulation. The NE and BVC

methods perform quite well when N is large. Besides, table 2 shows that, when the error

terms in the factor model have non-gaussian distributions, all of those five methods have poor

performances for choosing the number of strong factors in the factor model. Overall, if we

only have strong factors to be estimated in the data and the data is serially and cross-sectionally

correlated with gaussion distribution, our simulation results recommend to use the ER or ED

method for estimating the number of factors in the data.
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5.2 Results for estimating mixed strong and useful weak factors

Table 3 shows the performances of those five methods on estimating the number of useful weak

factors only in the first scenario with white, high serially correlated, mild cross-sectionally

correlated, or non-gaussion error terms in the factor model. From table 3, we can see that IC2

and ED methods actually perform very well for estimating the number of useful weak factors

with white noise in the factor model, though they are not designed to estimate the number of

weak factors. Also, when N is large, the IC2 method performs quite well when the error terms

in the factor model are mild cross-sectionally correlated. However, the IC2 and ED methods

have poor performances when the error terms in the factor model are high serially correlated

or have non-gaussion error terms. The ER method fails to estimate the number of useful weak

factors in all cases. The BCV and NE methods perform quite well when the error terms in the

factor model are white, mild cross-sectionally correlated, or have chi-square distribution. They

have poor performances when the error terms are high serially correlated or have lognormal

and gamma distributions, however.

Table 4 shows the performances of those five methods on estimating the number of mixed

strong and useful weak factors in the second scenario with white, high serially correlated, mild

cross-sectionally correlated, or non-gaussion error terms in the factor model. Comparing table

4 with table 3, we can see that the performances of the IC2, NE, and BCV methods in the table

4 are the same as the results in table 3. The ED method performs similar to the results in table

3, except now it performs surprisingly well for all N and T pairs when error terms in the factor

model are mild cross-sectionally correlated. The ER method still fails to choose the number of

weak factors, but it is quite robust to separate the number of strong factors from weak ones in

the data for all types of the noise terms in the factor model.

Table 5 shows the performances of those five methods on estimating the number of mixed

strong and useful weak factors in the third scenario with white, high serially correlated, mild

cross-sectionally correlated, or non-gaussian error terms in the factor model. Comparing table

5 with table 4, we can see that the IC2, ED, and NE methods have better performances for

estimating the number of strong and useful weak factors in table 5 than in table 4 when the
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error terms in the factor model have non-guassian distributions. The BCV method performs

the same as the results in table 4. The ER method not only fails to choose the number of weak

factors but also not perform well for estimating the number of strong factors for all types of

error terms in the factor model. Overall, if we want to estimate the number of strong and useful

weak factors in the data with white noise only, our simulation results recommend using the IC2,

ED, NE, or BCV method. Also, if the data are mild cross sectionally-correlated with mixed

strong and useful weak factors, our simulation results recommend using the ED, NE or BCV

method. Besides, if the data has chi-square distribution, our simulation results recommend to

use the NE or BCV method.

6 Conclusion

In this paper, we have shown that all of the methods we have discussed for choosing the number

of factors in high dimensional data are not robust by simulation when the error terms in the

factor model are serially and cross-sectionally correlated or have non-gaussian distributions.

Our simulation results provide useful recommendations to applied users for how to choose

the estimation method in dealing with different types of data. Specifically, if we only have

strong factors to be estimated in the data and the data is serially and cross-sectionally correlated

with gaussion distribution, our simulation results recommend to use the ER or ED method for

estimating the number of factors. If we want to estimate the number of strong and useful weak

factors in the data with white noise only, our simulation results recommend using the IC2, ED,

NE, or BCV method. Also, if the data are mild cross sectionally-correlated with mixed strong

and useful weak factors, our simulation results recommend to use the ED, NE or BCV method.

Besides, if the data has chi-square distribution, our simulation results recommend using the NE

or BCV method. Further researches will be needed to take care of the cross-sectional and serial

correlation in error terms in the context of choosing of number of strong and weak factors in a

high dimensional data set.

15



Table 1: Finite-sample performances of those five methods on choosing the number of strong
factors with white, high serially correlated, or mild cross-sectionally correlated error terms in
the factor model.

White Serial Cross sectional

N T < = > < = > < = >

IC2
20 200 0 100 0 0 0 100 0 0.0 100.0
20 100 0 100 0 0 0 100 0 2.1 97.9

100 20 0 100 0 0 0 100 0 100.0 0.0
50 50 0 100 0 0 0 100 0 99.7 0.3

200 20 0 100 0 0 0 100 0 100.0 0.0
ER

20 200 0.5 99.5 0 5.9 94.1 0.0 4.2 95.8 0
20 100 1.4 98.6 0 16.5 83.5 0.0 6.9 93.1 0

100 20 0.7 99.3 0 45.6 54.4 0.0 2.5 97.5 0
50 50 0.0 100.0 0 11.5 68.4 20.1 0.2 99.8 0

200 20 0.6 99.4 0 44.7 55.3 0.0 0.8 99.2 0
ED

20 200 0 99.8 0.2 0.0 86.2 13.8 0.1 95.5 4.4
20 100 0 99.2 0.8 3.9 61.4 34.7 0.2 93.0 6.8

100 20 0 99.2 0.8 0.0 0.4 99.6 0.0 95.3 4.7
50 50 0 97.4 2.6 4.3 31.3 64.4 0.0 96.4 3.6

200 20 0 99.6 0.4 0.1 0.6 99.3 0.0 98.2 1.8
NE

20 200 0 100 0 0 0.2 99.8 0 0.5 99.5
20 100 0 100 0 0 0.0 100.0 0 31.0 69.0

100 20 0 100 0 0 0.0 100.0 0 97.3 2.7
50 50 0 100 0 0 0.0 100.0 0 78.4 21.6

200 20 0 100 0 0 0.0 100.0 0 100.0 0.0
BCV

20 200 0.0 92.1 7.9 0 8.8 91.2 0.0 16.1 83.9
20 100 0.0 92.4 7.6 0 0.1 99.9 0.0 23.1 76.9

100 20 0.0 95.1 4.9 0 0.0 100.0 0.2 85.9 13.9
50 50 0.0 99.8 0.2 0 0.0 100.0 0.0 83.3 16.7

200 20 0.1 95.1 4.8 0 0.0 100.0 0.0 91.1 8.9
Note: >,=, <: overestimation, correct estimation,

underestimation, respectively.
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Table 2: Finite-sample performances of those five methods on choosing the number of strong
factors with non-guassion distributional error terms in the factor model.

Lognormal Gamma Chi-square

N T < = > < = > < = >

IC2
20 200 41.3 36.8 21.9 0.1 10.3 89.6 0 0.0 100.0
20 100 33.6 35.3 31.1 0.7 12.1 87.2 0 0.2 99.8

100 20 34.3 35.4 30.3 0.4 14.0 85.6 0 0.3 99.7
50 50 49.4 35.3 15.3 0.2 8.4 91.4 0 0.0 100.0

200 20 44.0 36.3 19.7 0.1 9.4 90.5 0 0.0 100.0
ER

20 200 97.4 2.6 0.0 58.6 41.4 0.0 20.8 79.2 0.0
20 100 93.5 6.5 0.0 59.4 40.6 0.0 22.4 77.6 0.0

100 20 96.3 3.7 0.0 58.3 41.7 0.0 23.7 76.3 0.0
50 50 94.1 5.1 0.8 7.1 12.2 80.7 2.5 48.4 49.1

200 20 96.7 3.3 0.0 63.0 37.0 0.0 19.5 80.5 0.0
ED

20 200 53.8 22.4 23.8 1.2 4.8 94.0 0 0.4 99.6
20 100 58.6 22.6 18.8 11.3 14.9 73.8 0 1.8 98.2

100 20 59.8 22.7 17.5 11.4 14.3 74.3 0 1.3 98.7
50 50 51.2 24.4 24.4 3.3 3.7 93.0 0 0.3 99.7

200 20 52.6 22.6 24.8 1.7 5.1 93.2 0 0.0 100.0
NE

20 200 26.6 47.9 25.5 0.0 12.1 87.9 0 0.2 99.8
20 100 34.8 42.2 23.0 1.1 22.6 76.3 0 0.5 99.5

100 20 12.6 32.9 54.5 0.1 4.7 95.2 0 0.0 100.0
50 50 5.5 27.9 66.6 0.0 0.4 99.6 0 0.0 100.0

200 20 11.9 35.3 52.8 0.0 1.7 98.3 0 0.0 100.0
BCV

20 200 53.4 28.5 18.1 17.7 25.1 57.2 1.7 13.7 84.6
20 100 70.2 22.3 7.5 30.5 28.9 40.6 1.8 18.3 79.9

100 20 87.2 11.3 1.5 43.8 30.4 25.8 0.8 19.7 79.5
50 50 80.0 17.0 3.0 9.3 28.9 61.8 0.0 4.6 95.4

200 20 81.5 14.6 3.9 17.8 26.1 56.1 0.3 11.3 88.4
Note: >,=, <: overestimation, correct estimation,

underestimation, respectively.
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Table 3: Finite-sample performances of those five methods on choosing the number of useful
weak factors only with different types of error terms in the factor model. There are six useful
weak factors in total to be estimated in the model. REE is the estimation error for recovering
the signal matrix defined in (3.5).

White Serial Cross Lognormal Gamma Chi-square

N T REE k̂ REE k̂ REE k̂ REE k̂ REE k̂ REE k̂

IC2
20 200 0.00 6.0 0.40 10 0.42 10.0 0.01 1.2 0.11 1.0 0.02 7.0
20 100 0.00 6.0 0.24 10 0.43 10.0 0.03 1.4 0.14 1.2 0.19 8.0
100 20 0.00 6.0 0.09 10 0.03 6.1 0.04 1.4 0.14 1.3 0.26 8.0
50 50 0.11 5.4 0.12 10 0.04 5.6 0.04 1.4 0.16 1.0 0.06 6.3
200 20 0.00 6.0 0.08 10 0.00 6.0 0.02 1.2 0.13 1.0 0.09 7.0

ER
20 200 3.56 0.0 1.94 0.0 2.00 0.0 0.00 1.1 0.12 0.9 1.56 0.0
20 100 3.99 0.0 1.77 0.1 2.51 0.0 0.00 1.1 0.18 0.6 2.04 0.0
100 20 4.12 0.0 1.37 0.7 3.79 0.0 0.01 1.1 0.18 0.7 2.28 0.0
50 50 0.99 3.9 0.48 2.8 1.17 3.4 0.01 1.1 0.16 1.0 1.16 1.8
200 20 3.63 0.0 1.15 0.9 3.53 0.0 0.00 1.0 0.14 0.9 1.79 0.0

ED
20 200 0.00 6 1.77 0.8 1.80 0.7 0.02 1.4 0.10 1.2 0.35 5.4
20 100 0.00 6 1.60 1.1 2.13 1.0 0.03 1.4 0.13 1.1 0.81 4.1

100 20 0.04 6 0.47 6.5 0.87 4.6 0.04 1.5 0.14 1.2 1.21 3.4
50 50 0.00 6 0.85 1.5 1.88 2.8 0.02 1.4 0.17 1.1 0.93 3.5

200 20 0.00 6 0.40 5.9 0.14 5.8 0.02 1.4 0.12 1.3 0.61 4.7
NE

20 200 0.13 5.2 0.24 8.2 0.15 7.1 0.02 1.3 0.10 1.1 0.03 6.3
20 100 0.15 5.2 0.18 8.8 0.04 6.2 0.03 1.4 0.12 1.2 0.05 6.1

100 20 0.00 6.0 0.10 10.8 0.01 6.0 0.06 1.8 0.13 1.7 0.10 7.0
50 50 0.09 5.5 0.25 14.9 0.04 6.1 0.04 1.8 0.12 1.9 0.02 6.9

200 20 0.00 6.0 0.11 10.3 0.00 6.0 0.03 1.6 0.11 1.4 0.08 6.8
BCV

20 200 0.19 5.7 0.22 7.8 0.23 6.8 0.05 1.5 0.16 2.4 0.18 6.2
20 100 0.24 5.4 0.21 9.1 0.21 6.7 0.05 1.4 0.13 2.1 0.23 5.7

100 20 0.22 5.3 0.10 10.8 0.20 6.7 0.05 1.1 0.22 1.7 0.28 5.0
50 50 0.11 5.5 0.20 12.6 0.23 6.8 0.07 1.3 0.36 2.1 0.12 5.8

200 20 0.18 5.7 0.10 12.3 0.24 6.8 0.05 1.3 0.37 2.3 0.19 6.3
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Table 4: Finite-sample performances of those five methods on choosing the number of mixed
strong and useful weak factors with different types of error terms in the factor model.There are
six factors to be estimated in the model with one strong factor and five useful weak factors.
REE is the estimation error for recovering the signal matrix defined in (3.5).

White Serial Cross Lognormal Gamma Chi-square

N T REE k̂ REE k̂ REE k̂ REE k̂ REE k̂ REE k̂

IC2
20 200 0.00 6.0 0.40 10 0.42 10.0 0.01 1.2 0.11 1.0 0.02 7.0
20 100 0.00 6.0 0.24 10 0.43 10.0 0.03 1.4 0.14 1.2 0.19 8.0
100 20 0.00 6.0 0.09 10 0.03 6.1 0.04 1.4 0.14 1.3 0.26 8.0
50 50 0.11 5.4 0.12 10 0.04 5.6 0.04 1.4 0.16 1.0 0.06 6.3
200 20 0.00 6.0 0.08 10 0.00 6.0 0.02 1.2 0.13 1.0 0.09 7.0

ER
20 200 2.39 1 1.31 1 2.45 1 0.07 1.0 0.19 1.8 1.01 1
20 100 2.79 1 1.18 1 2.45 1 0.05 1.1 0.14 1.7 1.33 1
100 20 2.90 1 0.89 1 2.44 1 0.06 1.1 0.23 1.7 1.57 1
50 50 3.19 1 0.54 1 2.43 1 0.09 1.1 0.34 1.9 1.22 1
200 20 2.60 1 0.57 1 2.43 1 0.07 1.0 0.36 1.8 1.18 1

ED
20 200 0.00 6 1.18 1.5 0.34 5.1 0.03 1.8 0.21 2.0 0.28 5.3
20 100 0.03 6 1.07 2.2 0.25 5.4 0.05 1.6 0.16 1.8 0.67 3.9

100 20 0.00 6 0.27 7.0 0.35 5.2 0.05 1.7 0.24 1.9 0.63 4.7
50 50 0.00 6 0.47 1.9 0.20 5.5 0.06 2.2 0.37 2.1 0.57 4.1

200 20 0.00 6 0.31 6.1 0.25 5.4 0.04 1.9 0.40 2.1 0.34 5.5
NE

20 200 0.13 5.2 0.24 8.2 0.15 7.1 0.02 1.3 0.10 1.1 0.03 6.3
20 100 0.15 5.2 0.18 8.8 0.04 6.2 0.03 1.4 0.12 1.2 0.05 6.1

100 20 0.00 6.0 0.10 10.8 0.01 6.0 0.06 1.8 0.13 1.7 0.10 7.0
50 50 0.09 5.5 0.25 14.9 0.04 6.1 0.04 1.8 0.12 1.9 0.02 6.9

200 20 0.00 6.0 0.11 10.3 0.00 6.0 0.03 1.6 0.11 1.4 0.08 6.8
BCV

20 200 0.19 5.7 0.22 7.8 0.23 6.8 0.05 1.5 0.16 2.4 0.18 6.2
20 100 0.24 5.4 0.21 9.1 0.21 6.7 0.05 1.4 0.13 2.1 0.23 5.7

100 20 0.22 5.3 0.10 10.8 0.20 6.7 0.05 1.1 0.22 1.7 0.28 5.0
50 50 0.11 5.5 0.20 12.6 0.23 6.8 0.07 1.3 0.36 2.1 0.12 5.8

200 20 0.18 5.7 0.10 12.3 0.24 6.8 0.05 1.3 0.37 2.3 0.19 6.3
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Table 5: Finite-sample performances of those five methods on choosing the number of mixed
strong and useful weak factors with different types of error terms in the factor model.There are
six factors to be estimated in the model with three strong factor and three useful weak factors.
REE is the estimation error for recovering the signal matrix defined in (3.5).

White Serial Cross Lognormal Gamma Chi-square

N T REE k hat REE k hat REE k hat REE k hat REE k hat REE k hat

IC2
20 200 0.04 6.0 0.42 10 0.14 4.8 0.07 4.5 0.25 4.0 0.09 7.1
20 100 0.03 6.0 0.32 10 0.15 4.8 0.11 4.9 0.23 4.5 0.16 7.9
100 20 0.00 6.0 0.13 10 0.18 4.7 0.13 4.9 0.51 4.8 0.22 7.7
50 50 0.11 5.4 0.36 10 0.13 4.8 0.05 4.2 0.44 4.0 0.04 6.5
200 20 0.00 6.0 0.23 10 0.15 4.8 0.03 4.2 0.48 4.0 0.11 7.1

ER
20 200 4.77 2 3.34 2 0.88 3 0.43 1.0 0.84 1.8 2.66 2
20 100 4.81 2 2.87 2 0.89 3 0.40 1.1 0.84 1.8 2.82 2
100 20 5.28 2 1.87 2 0.90 3 0.38 1.0 1.04 1.7 3.12 2
50 50 1.24 3 0.02 3 0.89 3 0.49 1.2 0.41 3.8 0.24 3
200 20 5.30 2 1.95 2 0.89 3 0.41 1.0 0.96 1.8 2.83 2

ED
20 200 0.04 6.0 0.32 3.5 0.16 5.4 0.12 3.5 0.29 4.0 0.07 5.8
20 100 0.04 5.9 0.33 4.2 0.12 5.4 0.19 2.6 0.40 3.5 0.17 5.2
100 20 0.01 6.0 0.12 7.3 0.13 5.6 0.20 2.8 0.53 3.7 0.24 5.1
50 50 0.01 6.0 0.10 4.0 0.15 5.5 0.23 3.0 0.45 4.2 0.13 5.1
200 20 0.00 6.0 0.19 7.3 0.14 5.5 0.12 3.4 0.46 4.0 0.13 5.9

NE
20 200 0.08 5.2 0.24 7.9 0.01 6.0 0.02 4.2 0.22 4.0 0.05 6.3
20 100 0.10 5.3 0.24 9.1 0.04 6.1 0.04 3.8 0.20 4.0 0.05 6.2
100 20 0.00 6.0 0.16 10.9 0.05 6.1 0.07 4.7 0.40 4.3 0.13 7.0
50 50 0.07 5.6 0.51 14.8 0.01 6.0 0.08 4.7 0.47 4.2 0.03 7.0
200 20 0.00 6.0 0.25 10.8 0.02 6.1 0.03 4.3 0.46 4.2 0.09 6.9

BCV
20 200 0.19 5.7 0.22 7.8 0.23 6.8 0.05 1.5 0.16 2.4 0.18 6.2
20 100 0.24 5.4 0.21 9.1 0.21 6.7 0.05 1.4 0.13 2.1 0.23 5.7
100 20 0.22 5.3 0.10 10.8 0.20 6.7 0.05 1.1 0.22 1.7 0.28 5.0
50 50 0.11 5.5 0.20 12.6 0.23 6.8 0.07 1.3 0.36 2.1 0.12 5.8
200 20 0.18 5.7 0.10 12.3 0.24 6.8 0.05 1.3 0.37 2.3 0.19 6.3
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Appendix A

In this section, we show the empirical evidence that weak factors exist in the real finance data

and strong factor assumption is not appropriate to assume when both N and T are large, as we

mentioned in the section 3.1. That is, the eigenvalues of the sample covariance matrix of the

data do not separate into groups of large and small eigenvalues as N, T → ∞. Specifically,

we collect the data on daily returns of 100 industrial portfolios from the web site of Kenneth

French. The 100 industrial portfolios are formed as the intersection of ten portfolios based on

the book to market ratio (BM) and the other ten portfolios based on the market equity (ME).

The book to market ratio is the book value divided by market equity. The excess returns are

calculated for the period from the Jan.20th, 2015 to Dec.20th, 2018 (T=1000) as follow:

R̃real
it =

Rit −Ri,t−1

Ri,t−1
,

where Rit is the average value weighted returns of the portfolios formed on BM and ME.

It is commonly believed that such data contain at least three factors based on the standard

Fama-French three-factor model. Hence, the strong factor assumption suggests the existence of

a large gap between λ3 and λ4 as N, T →∞, where λi is the i-th largest eigenvalue of the sam-

ple covariance matrix of the data. However, if we fixed N = 100 and let T = 100, 500, 1000,

Figure 1 clearly shows that except i = 1, there are no large gaps between eigenvalues i and

i+ 1 of the sample covariance matrix Σ̂Y = Y ′Y/N of the excess return data for i = 1, 2 · · · 15.

Also, instead of diverging at the rateO(T ), the largest eigenvalue λ1 of Σ̂Y is bounded between

the detection threshold and estimation threshold that defined in RMT, rending it as a weak fac-

tor as N, T → ∞. Therefore, the strong factor assumption does not appropriate to assume for

this data set.
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Figure 1: Top 15 sample covariance eigenvalues of 100 industrial portfolio data. We fixed
N=100 and let T = 100, 500, and 1000 from top to below.
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Appendix B

In this section, we go over the details of using PCA in factor analysis. As a common statistical

method for dimension reduction of the data, principal component analysis (PCA) closely relate

to factor analysis. The reason is that the PCA method is often used to estimate the loadings

and factors in a factor model. Basically, PCA tries to maximize the sample variance by finding

linear combinations of the observed variables. Specifically, let Σ̂Y = Y Y
′
/T be the sample

covariance matrix corresponding to the population covariance matrix ΣY = E(YtY
′
t ), assuming

E(Yi) = 0 for i = 1, 2, · · · , N . Let Pi be a (N × 1) independent orthogonal vector such that

P ′iPi = 1. Then the variance of P ′iY is

Var(P ′iY ) = E(P ′iY )2 = E[(P ′iY )(P ′iY )′]

= P ′iE(Y Y ′)Pi, for i,= 1, 2 · · · , N.
(6.1)

This variance can be estimated by P ′i Σ̂Y Pi. To maximize P ′i Σ̂Y Pi subject to P ′iPi = 1, the

standard approach is to use the technique of Lagrange multipliers. Maximize

P ′i Σ̂Y Pi − λ(P ′iPi − 1), (6.2)

where λ is a Lagrange multiplier. Differentiation with respect to Pi gives

(Σ̂Y − λIN)Pi = 0, (6.3)

where IN is the (N × N) identity matrix. Thus, λ is an eigenvalue of Σ̂Y and Pi is the cor-

responding eigenvector. To decide which of the N eigenvectors Pi gives P ′iY with maximum

variance, note that P ′i Σ̂Y Pi = P ′iλPi = λP ′iPi = λ, so λ must be as large as possible to maxi-

mize the variance of P ′iY . Thus, P1 is the eigenvector corresponding to the largest eigenvalue

of Σ̂Y and P ′1Y is the first principle component (PC). In general, the k-th PC of Y is P ′kY and

P ′kΣ̂Y Pk = λk, where λk is the k-th largest eigenvalue of Σ̂Y , and Pk is the corresponding

eigenvector. Hence, in matrix form, let the eigenvalue decomposition of Σ̂Y be Σ̂Y = PΛP
′ ,
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where Λ = diag(λ1, λ2, · · · , λN) with λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 and P is an orthogonal

N ×N matrix. Then the columns of P are eigenvectors of Σ̂Y , and the rows of P ′Y are called

principle components (PCs).

Similar with PCA, one can use the singular value decomposition (SVD) of Y to derive

eigenvectors and PCs. Let Y =
√
T ÛD̂V̂

′ where Û ∈ RN×min(N,T ), V̂ ∈ RT×min(N,T ), and

D̂ = diag(d̂1, d̂2, · · · , d̂min(N,T )), with Û
′
Û = V̂

′
V̂ = Imin(N,T ), and d̂1 ≥ d̂2 ≥, · · · ,≥

d̂min(N,T ). Now, it is clear that the first r (r ≤ min(N, T )) eigenvectors of Σ̂Y are columns

of Û and the first r principle components are columns of
√
TV D and d̂2r = λr for r =

1, 2, 3, · · · ,min(N, T ). For more detail of PCA, one can refer to [16] and [3].

To use PCA in factor analysis, we essentially use the eigenvectors of the sample covari-

ance matrix to estimate the linear space of factors. Then, we can estimate the correspond-

ing loadings by the least square method. Specifically, let r be an arbitrary number such that

0 < r < min{N, T}, the least square method seeks Lr = (L1, L2, · · · , LN)′ ∈ RN×r and

Fr = (F1, F2, · · · , FT ) ∈ Rr×T such that

V (L̂r, F̂r) = min
Fr,Lr

1

NT
‖Y − LrFr‖2F , (6.4)

subject to the normalization

FrF
′
r/T = Ir, and L′rLr is diagonal for identification, (6.5)

where ‖A‖F is denoted as Frobenius norm for matrix A, defined by ‖A‖F = tr
1
2 (AA′). The

matrix form for factor model (2.1) can be expressed as

Y = LrFr + e, (6.6)

with Y ∈ RN×T , Lr ∈ RN×r, Fr ∈ Rr×T , and e ∈ RN×T . Hence, for each given Fr, the least

squares estimator of Lr is L̂r = Y F ′r/T , using the constraint (6.5) on the factors. Substituting
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this into equation (6.4), the objective function now becomes

‖Y − Y F ′rFr/T‖2F = tr(Y − Y F ′rFr/T )(Y − Y F ′rFr/T )′

= tr(Y Y ′ − Y F ′rFrY
′/T − Y FrF

′
rY
′/T + Y F ′rFrF

′
rFrY

′/T 2)

= tr{Y (IN − F ′rFr/T )Y ′},

(6.7)

which is identical to maximizing tr{Y (F ′rFr/T )Y ′} = tr{Fr(Y
′Y/T )F ′r} due to cyclic prop-

erty of the trace. In view of the equation (6.1) in matrix form, the estimated factor matrix,

denoted by F̂ pc′
r , is

√
T times the eigenvectors corresponding to the r largest eigenvalues of

T × T matrix Y ′Y . Given F̂ pc′
r , L̂pc

r = Y F̂ pc
r
′/T is the corresponding matrix of loadings.

Note that if we normalize L′rLr/N = Ir instead of FrF
′
r/T = Ir and assume FrF

′
r is diagonal

in (6.5), then another solution is given by (F̄ pc
r , L̄pc

r ), where L̄pc
r is constructed as

√
N times

the eigenvactors corresponding to the r largest eigenvalues of the N × N matrix Y Y ′. Given

L̄pc
r , F̄ pc

r = L̄pc
r
′Y/N is the corresponding matrix of factors. The second set of calculation is

computationally less expensive when N < T , while the first is less intensive when T < N .
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Appendix C

In this section, we take the information criteria based method developed by Bai and Ng [?] as

an example and explain why the strong factor assumption is critical for choosing the number of

factors. The mechanism for this method to work is that the discrepancy V (r)−V (r0) converges

to different values for r < r0 and r > r0. More specifically, Bai and Ng [?] have shown that

V (r)−V (r0) 9 0 for r < r0 and V (r)−V (r0)→ 0 for r > r0 at the rate C2
NT as N, T →∞.

Note that in (3.2), the loss function V (r) is decreasing as r increases while the penalty function

rg(N, T ) is increasing in r, so IC(r) in (3.3) is minimized by balancing these two functions at

the true factor number r0 asymptotically. Therefore, under the two conditions for the penalty

function g(N, T ), if r < r0, we have V (r) − V (r0) 9 0 and g(N, T ) → 0 as N, T → ∞,

it is clear that IC(r) is not asymptotically minimized at a r < r0; while if r > r0, we have

V (r) − V (r0) → 0 at the rate C2
NT and C2

NTg(N, T ) → ∞ as N, T → ∞, then the penalty

eventually becomes dominant and overfitting is prohibited.

The reason why strong factor assumption is critical for this method to work is that first,

it ensures the PCA or MLE estimators for estimating factor loadings and common factors are

consistent as we have shown before; second, from the equation (3.3), we can see that the loss

function V (r) in (3.3) is actually the sum of rest eigenvalues of the T × T matrix Y ′Y from

λr+1 to λT . Since we know that under the strong factor assumption, the top r0 of the T × T

matrix Y ′Y will goes to infinity as N, T → ∞, so V (r) will goes to infinity as N, T → ∞

if r < r0, while it is bounded if r > r0. Hence, the strong factor assumption ensures that the

discrepancy V (r)− V (r0) converges to different values for r < r0 and r > r0.
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