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Introduction

Factor analysis is one of the cores method for handling large data
matrices and high dimensional data, with wide applications in
macroeconomics, finance and other areas.

A big challenge in factor analysis is how to estimate the number of
factors. Most methods for estimating the number of factors are based
on the results from random matrix theory (RMT), which require i.i.d
and gaussian assumption on the error terms.

The theme of my third year paper is to show that whether those
methods for estimating the number strong and weak factors are
robust by simulation when the error terms are serially and
cross-sectionally correlated or have non-gaussian distributions.
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Classical methods

1. Under the asymptotic regime that N is fixed and T →∞

Sequential hypotheses test: Lawley, 1956; Bartelett, 1950; Anderson
and Rubin, 1956;

Scree test: Cattell, 1966; Cattell and Vogelmann, 1977;

Kaiser’s rule: (Kaiser, 1960);

Parallel analysis (PA): Horn, 1965; Buja and Eyuboglu, 1992;

Information criteria based methods such as Bayesian Information
Criteria (BIC) and Akaike Information Criteria (AIC): Wax and
Kailath, 1985; Fishler et al., 2002;

The fundamental problem the for those classical factor estimation methods
is that they does not apply when both N and T →∞.
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Methods for Large Matrices

2. Under the asymptotic regime that both N,T →∞, methods for
estimating the number of strong factors

Information criteria based methods: Bai and Ng (2002), Bai (2003);
later improved by L. Alessi et al (2010);

Eigenvalues difference based method: Onatski (2010);

Eigenvalues ratio based method: Ahn and Horenstein (2013);

3. Methods for estimating the number of weak factors

Information criteria based method: Nadakuditi and Edelman (2008);

Bi-cross-validation based method: Owen and Wang (2015);
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Basic Factor Model

Let Yit be the observed data for the ith cross-section unit at time t,
for i = 1, 2, · · · ,N and t = 1, · · · ,T . The factor model for Yit is
given by

Yit = Xit + eit = L
′
iFt + eit , (1)

where r0 is the true number of factors, Ft is a (r0 × 1) vector of
common factors, Li is a (r0 × 1) vector of loadings associated with Ft ,
and eit is the idiosyncratic errors of Yit . Note that the factors, their
loadings, as well as the idiosyncratic errors are not observable.

The factor model (1) can be put in a matrix form as:

Yt = LFt + et , (2)

with L = (L1, L2, · · · , LN)
′ ∈ RN×r0 .
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PCA and SVD in Factor Analysis

As a common statistical method for dimension reduction of the data,
principle component analysis (PCA) is closely related to factor
analysis. Basically, PCA tries to find linear combinations of the
observed variables to maximize the sample variance.

Let Σ̂Y = YY
′
/T be the sample covariance matrix corresponding to

the population covariance matrix ΣY = E (YtY
′
t ) assuming E (Yi ) = 0

for i = 1, 2, · · · ,N. Let the eigenvalue decomposition of Σ̂Y be
Σ̂Y = PΛP

′
, where Λ = diag(λ1, λ2, · · · , λN) with

λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 and P is an orthogonal N × N matrix.

Then the columns of P are eigenvectors of Σ̂Y , and the rows of P ′Y
are called principle components (PCs).
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PCA and SVD in Factor Analysis

Similar with PCA, one can use the singular value decomposition
(SVD) of Y to derive eigenvectors and PCs.

Let Y =
√
TÛD̂V̂

′
where Û ∈ RN×min(N,T ), V̂ ∈ RT×min(N,T ), and

D̂ = diag(d̂1, d̂2, · · · , d̂min(N,T )), with Û
′
Û = V̂

′
V̂ = Imin(N,T ), and

d̂1 ≥ d̂2 ≥, · · · ,≥ d̂min(N,T ).

Note that

Σ̂Y = YY
′
/T = ÛD̂V̂

′
V̂ D̂Û ′

= Û(D̂)2Û ′,

so it is clear that the first r (r ≤ min(N,T )) eigenvectors of Σ̂Y are
columns of Û and the first r principle components are rows of
Û ′Y =

√
TD̂V̂

′
and d̂2

r = λr for r = 1, 2, 3, · · · ,min(N,T ).
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PCA and SVD in Factor Analysis

To use PCA in factor analysis, we essentially use the eigenvectors of
sample covariance matrix to estimate the linear space of factors and
then estimate the linear space of loadings by least square method.

Let r be an arbitrary number such that 0 < r < min{N,T}, the least
square method seeks L = (L1, L2, · · · , LN)′ ∈ Rr×N and
F = (F1,F2, · · · ,FT ) ∈ Rr×T such that

V (L̂, F̂ ) = min
F ,L

∥∥Y − L′F
∥∥2
F
, (3)

subject to FF ′/T = Ir , and L′L is diagonal for identification.

Note: ‖A‖F is denoted as Frobenius norm for matrix A, defined by

‖A‖F = tr
1
2 (AA′).
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PCA and SVD in Factor Analysis

The matrix form for factor model can be expressed as

Y = L′F + e,

with Y ∈ RN×T , L ∈ Rr×N , F ∈ Rr×T , and et ∈ RN×T .

Hence, for each given F , the least squares estimator of L′ is
L̂′ = YF ′/T . Substituting this into equation (3), the objective
function now becomes

‖Y − YF ′F/T‖2F = tr(Y − YF ′F/T )(Y − YF ′F/T )′

= tr{Y (IN − F ′F/T )Y ′},

which is identical to maximizing tr{F (Y ′Y /T )F ′}. Now it is clear
that the estimated factor matrix F̂ ′pc, is

√
T times the eigenvectors

corresponding to the r largest eigenvalues of T × T matrix Y ′Y .
Given F̂ ′pc, L̂′pc = Y F̂ ′pc/T is the corresponding loading matrix.
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Strong and Weak Factor Assumptions

Assuming factors Ft and noise et are uncorrelated and have zero mean,
and normalization E (F

′
tFt) = Ir , then the covariance matrix of the factor

model is given by
ΣY = LL

′
+ Σu,

where ΣY and Σu are the N × N covariance matrix of Yt and et .

For strong factors, it is assumed that L
′
L/N → ΣL for some r0 × r0

positive definite matrices ΣL as N →∞. In this case, the top r0
eigenvalues of ΣY are diverge at the rate O(N) while the rest of its
eigenvalues are bounded as N,T →∞.

For weak factors, it is assumed that L
′
L→ ΣL as N →∞ for some

positive definite matrix ΣL. In this case, all the eigenvalues of ΣY are
bounded as N,T →∞.
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Consistency of PCA Estimators

Under the weak factor assumption, PCA or MLE estimators of
loadings and factors are inconsistent as N,T →∞.

We can illustrate this by a simple example. Define

Yit = LiFt + εit , εit
iid∼ N (0, 1),

and let r = 1 for simplicity. If Li is known, then the OLS estimator for
Ft is

F̂t =

∑N
i=1 LiYit∑N
i=1 L

2
i

= Ft +

∑N
i=1 Liεit∑N
i=1 L

2
i

,

so we have E (F̂t) = Ft and Var(F̂t) = 1/
∑N

i=1 L
2
i . Hence, for F̂t to

be consistent, we need
∑N

i=1 L
2
i →∞ (strong factor assumption)

such that P(|F̂t − Ft | > δ) ≤ Var(F̂t)/δ
2 → 0 as N →∞.
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Why weak factors is important?

There are several reasons why we need to estimate the number of weak
factors except for strong ones.

In many real finance and macroeconomics data sets where both N
and T are large, the empirical observations show that the eigenvalues
of the sample covariance matrices do not obviously separated into
large and small eigenvalues groups.

Including useful weak factors in the number of estimated factors can
decrease the estimation error for recovering the underlying signal
matrix.

In many studies, the strong factors are obvious and uninteresting
while the weak factors have useful insights.
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Strong Factor Estimation

There are many methods to consistently estimate the number of
factors under strong factor assumption as N,T →∞.

Let’s take the information criteria based methods developed by Bai
and Ng (2002) as a example and show why the strong factor
assumption is critical. Define

V (r) =
1

NT

∥∥∥Y − L̂pcr F̂ pc
r

∥∥∥2
F
,

where L̂pcr and F̂ pc
r be the principal component estimators as we

discussed before,and r is an arbitrary number such that
0 < r < min{N,T}. Note this loss function is decreasing in r .
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Strong Factor Estimation

Based on V (r), Bai and Ng have shown that if g(N,T )→ 0, and
min{

√
N,
√
T}g(N,T ) →∞ as N,T →∞, then the estimator r̂

defined by

r̂IC = argmin0≤r≤rmax
{V (r) + rg(N,T )},

is a consistent estimator: limN,T→∞P(r̂IC = r) = 1.

Note that the penalty function rg(N,T ) is increasing in r , so the
penalized loss function is minimized by balancing these two functions
at the true factor number r0 asymptotically.

The strong factor assumption is critical for this method since it
ensures that the principal component estimators L̂pcr and F̂ pc

r are
consistent as N,T →∞.
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Strong Factor Estimation

Onatski (2010) developed an estimator based on the difference of two
adjacent eigenvalues (ED) of sample covariance matrix. The
estimator he proposed is

r̂ED = max {r ≤ rmax : λr − λr+1 ≥ δ} ,

where δ is some fixed number, λi is the i-th largest eigenvalue of Σ̂Y .

Ahn and Horenstein (2013) proposed an estimator by simply
maximizing the ratio of two adjacent eigenvalues of the sample
covariance matrix. The estimator is defined as

r̂ER = argmin0≤r≤rmax
λr/λr+1,

with λ0 =
∑min(N,T )

r=1 λr/ log min(N,T ).
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Weak Factor Estimation

The results from random matrix theory (RMT) show that, even for
white noise case Σu = σ2IN , PCA estimators of the loadings and
factors are inconsistent as N,T →∞. Specifically, there exists a
phase transition phenomenon in the limit: let ξk denotes the k-th
largest eigenvalue of population covariance matrix ΣY , if

ξk < (
√
N/T + 1)σ2,

there is a little chance to detect of the k-th factor using PCA or MLE
as T ,N →∞. (Kritchman and Nadler, 2009)

Define the number of detectable factors as

#{k ≤ N : ξk > (
√
N/T + 1)σ2},

then one goal is to estimate the number of detectable factors.
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Weak Factor Estimation

Nadakuditi and Edelman (2008) developed an method (NE) based on
the distribution of the sample eigenvalues to estimate the number of
detectable factors (signals) in white noise and high dimensional data
using the results from random matrix theory (RMT).

The reason why we need to use the results of RMT spreading of the
sample eigenvalues in the high-dimensional regime can be precisely
described by new analytical results from RMT.

Instead of estimating the number of detectable factors, one may
prefer estimating the number of useful factors. The number of useful
factors recover an underlying signal matrix more precisely than using
the true number of factors or detectable factors.
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Factor Taxonomy

From the results of RMT, there are two thresholds of signal strength: a
detection threshold (µF ) and an estimation threshold (µ∗F ). Based on
these two asymptotic thresholds, each factor can be roughly placed into
four categories:

1 Undetectable factor, d2
i < µF , the factor is asymptotically

undetectable by PCA or MLE based methods.

2 Harmful weak factor, µF < d2
i < µ∗F , including the factor in the

model will make the loss for recovering signal matrix larger.

3 Useful weak factor, µ∗F < d2
i = O(1), including the factor will reduce

the loss for recovering signal matrix.

4 Strong factor, d2
i grows proportionally to N.

Note: di is the i-th largest singular value of Y . We have the identity for
d2
i = λi , where λi is the i-th largest eigenvalue of Σ̂Y .
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Weak Factor Estimation

Owen and Wang (2015) proposed a bi-cross-validation (BCV) based
method to estimate the number of useful factors, using randomly
held-out submatrices of the data matrix. The model is:

Y = X + Σ
1
2E = LF + Σ

1
2E , (4)

where X ∈ RN×T (signal matrix) is a product of loading matrix
L ∈ RN×r0 and factor matrix F ∈ Rr0×T . The noise matrix
E ∈ RN×T with entries eit

iid∼ N (0, 1) with Σ = diag(σ21, σ
2
2, · · ·σ2N).

The goal is to recover the signal matrix X despite the heteroscedastic
noise using the criteria function:

ErrX (X̂ ) = E
(
‖X̂ − X‖2F

)
, (5)

where ‖A‖F = tr
1
2 (AA′).
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Weak Factor Estimation

For each number of factor r ≥ 0, let M be a method that gives a
estimator X̂M(r) of X using Y and r . The oracle number of factors
for M is defined as

r∗M = argmin
r

(∥∥∥X̂M(r)− X
∥∥∥2
F

)
,

and the corresponding oracle estimate of X is X̂M
opt = X̂M (r∗M) .

For a good method M, when all the factors are strong enough, we
should have r∗M = r0; while r∗M < r0 with weak enough factors.

The algorithm for recovering the signal matrix X has two steps:

1 Devise a method M to estimate X given oracle number of factors r∗M .
2 With such a method in hand, we need a means to estimate r∗M .
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Early Stopping Alternation (ESA)

The method they devised for estimating X at a given r is early
stopping alternation (ESA). Based on the sample variance, an initial

estimator of Σ in noise matrix Σ
1
2E is given by

Σ̂ = diag

((
Y − 1

T
Y 1T×T

)(
Y − 1

T
Y 1T×T

)′)
. (6)

Based on Σ̂, the estimator X̂ (r) for each r is defined as

X̂ (r) = Σ̂
1
2 Ỹ (r), (7)

with reweighted matrix Ỹ (r) = Σ̂−
1
2Y (r), where

Σ̂−
1
2Y (r) = U(r)D(r)V (r)

′
is the truncated singular value

decomposition (SVD) of the matrix Y after normalization.
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Early Stopping Alternation (ESA)

Given an estimator X̂ (r), the variance estimator Σ̂ can be updated by:

Σ̂ =
1

n
diag

[
(Y − X̂ (r))(Y − X̂ (r))

′
]
. (8)

The ESA method simply start at (6) and iterate the (7) and (8) for
some number m of times and then stop. By this process, they find
that taking m = 3 works almost as well as whichever m is used to
give the smallest estimation error in (5).

Note that SVD after normalization of each variable is equivalent to
ESA starting from (6) with m = 1, so ESA with m = 3 can be
understood as applying truncated SVD on a more properly reweighted

data (Σ̂−
1
2Y ) than one gets with m = 1.
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BCV Method

The means they developed for estimating r∗ESA is bi-cross-vaildation
(BCV) based method. In this method, the data matrix Y into four
blocks by randomly select N0 rows and T0 columns as the held-out
block as below

Y =

(
Y00 Y01

Y10 Y11

)
,

where Y00 is the selected N0 × T0 held-out block, and Y01, Y10, and
Y11 are the other three held-in blocks.

Correspondingly, X and Σ can be partitioned as

X =

(
X00 X01

X10 X11

)
, and Σ =

(
Σ0 0
0 Σ1

)
.

The idea of BCV method is that, for each candidate r , we first use
the three held-in blocks to estimate X00 and then select the optimal
r∗ based on the BCV estimated prediction error.

27 / 45



BCV Method

More specifically, model (4) can be rewritten in terms of the four
blocks:(

Y00 Y01

Y10 Y11

)
=

(
X00 X01

X10 X11

)
+

(
Σ0 0
0 Σ1

) 1
2
(

E00 E01

E10 E11

)

=

(
L0F0 L0F1
L1F0 L1F1

)
+

(
Σ

1
2
0E00 Σ

1
2
0E01

Σ
1
2
1E10 Σ

1
2
1E11

)
.

Note that the held-in block

Y11 = X11 + Σ
1
2
1E11 = L1F1 + Σ

1
2
1E11

also has the factor structure as (4), so we can get estimators X̂11(r)
and Σ̂1 by using ESA for each r .
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BCV Method

The estimator X̂11(r) can be decomposed as X̂11(r) = L̂1F̂1 for
r < rank(Y11).

Then L0 and F0 can be estimated by solving the linear regression

model Y01 = L0F̂1 + Σ
1
2
0E01 and Y10 = L̂1F0 + Σ̂

1
2
1E10. These least

square solutions are

L̂0 = Y01F̂
′
1

(
F̂1F̂

′
1

)−1
and F̂0 =

(
L̂
′
1Σ̂−11 L̂1

)−1
L̂
′
1Σ̂−11 Y10,

which do not depend on the unknown Σ0.

Then the estimator of X00 is X̂00(r) = L̂0F̂0 given r . They proved
that the estimate X̂00(r) is unique, though the decomposition of
X̂11(r) is not unique.
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BCV Method

With estimated X̂00(r), the cross-validation prediction average
squared error for block Y00 then can be defined as

E
[
P̂Er (Y00)

]
=E

[
1

N0T0

∥∥∥Y00 − X̂00(r)
∥∥∥2
F

]
=E

[
1

N0T0
ErrX00

(
X̂00(r)

)]
+

1

N0

N0∑
i=1

σ2i .

By repeating the above random partitioning step K times
independently, the average BCV mean squared prediction error for Y
is

P̂E(r) =
1

K

K∑
k=1

P̂Er (Y
(k)
00 ),

where Y
(k)
00 means the k-th time of random partition.
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BCV Method

The BCV estimate of the number of useful factors r∗ESA is then

r̂∗ESA = arg min
r

P̂E(r), 0 ≤ r ≤ rmax.

Lastly, for choosing the size of the holdout Y00, we can define the
true prediction error for ESA as:

PE(r) =
1

TN
‖X − X̂ (r)‖2F +

1

N

∑
i

σ2i , (9)

then the optimal number of factors for ESA is r̂∗0 = arg minr PE(r).

Perry (2009) proved that r̂∗ESA and r̂∗0 track each other asymptotically
if the relative size of the held-out matrix Y00 satisfies the following
theorem.
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BCV method

Theorem

For factor model (4), if r0 is fixed and N/T → γ ∈ (0,∞), then r̂∗ESA and
r̂∗0 converge to the same value if

√
ρ =

√
2√

γ̄ +
√
γ̄ + 3

holds, where

γ̄ =

(
γ1/2 + γ−1/2

2

)2

, and ρ =
T − T0

T
· N − N0

N
.

Here ρ is the fraction of entries from Y in the held-in block Y11. For
example, ρ ≈ 22% if Y is square with c = 1.
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Issue of Non-Robustness

Most methods for estimating the number of factors are based on the
results from random matrix theory (RMT), which require i.i.d and
Gaussian assumption on the error terms. These restrictions may not
appropriate when we want to apply them in practice.

The purpose of this simulation design is to show that whether all the
methods we have introduced before are robust for estimating the
number of factors (strong, weak and mixed), when the error terms are
cross-sectional and high serial correlated or have non-guassian
distributions.
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Strong factors only

First, we consider there are only strong factors in the generated data
and apply all of the methods in the approximate factor model with
serial, cross-sectional or non-guassian error terms.

This simulation design follows the design of Baltagi, Kao, and Peng
(2014) and Onatski (2012). Specifically, we consider the following
data-generating process (DGP):

Yit =
r∑

j=1

λijFtj + eit , where

λij ,Ftj
iid∼ N (0, 1), i = 1, · · · ,N, t = 1, 2, · · · ,T ,

eit = ρ1eit−1 + (1− ρ21)1/2ξit ,

ξit = ρ2ξi−1,t + (1− ρ22)1/2εit , εit
iid∼ N (0, 1).
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Strong factor only

We let r = 2, and consider the three cases for eit below:

1 high serial correlation only, ρ1 = 0.9 and ρ2 = 0;
2 mild cross-sectional correlation only, ρ1 = 0 and ρ2 = 0.5;
3 non-guassion distributions only, ρ1 = ρ2 = 0 with four types of

distributions for eit : normal, gamma, lognormal and chi-square with
mean zero and variance 0.5.

We use guassian and i.i.d error terms as our benchmark.

The methods we use to apply for estimating the number of factors in
the generated data are IC2, ER, ED, NE and BCV methods, where
IC2 is one of the six criterions proposed by Bai and Ng (2002). We
choose this criterion simply because it has the largest penalty term so
that the probability of overestimation is the smallest.
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Mixed with strong and weak factors

Next, we consider there are weak factors or mixed with strong and
weak factors in the generated data and apply all of the methods in
the approximate factor model with serial, cross-sectional or
non-guassian error terms.

This simulation design follows the design of Owen and Wang (2015)
and Onatski (2012). Consider the model for generating data as:

Y = X + Σ
1
2E

= Σ
1
2 (Σ−

1
2X + E ) = Σ

1
2 (
√
TÛD̂V̂

′
+ E )

where
√
TÛD̂V̂

′
is the singular value decomposition (SVD) for

Σ−
1
2X as we have introduced before. The singular value matrix

D̂ = diag(d̂1, d̂2, · · · , d̂min(N,T )) defines the strength of each factor.
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Generating the signal matrix

Based on those four categories of factor strength, we can generate the

weighted signal matrix Σ−
1
2X =

√
TUDV

′
with strong and weak factors in

two steps as follows:

Six testing scenarios are described in the table below:

U and V : they are generated uniformly from the Stiefel manifold
Vk(RN) and Vk(RT ) by certain process following (Perry 2009).
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Generating the noise

We consider three cases below for constructing the noise term Σ
1
2E and

use E = (eit)N×T : eit
iid∼ N (0, 1) and Σ = IN as our benchmark.

Case 1: Error term with serial correlation,

1 E = (eit)N×T : eit = ρ1eit−1 + (1− ρ21)1/2εit , εit
iid∼ N (0, 1)

2 Σ = IN : assume homoskedasiticity.

We let ρ1 = 0.9 for a high degree of the serial correlation.

Case 2: Error term with cross-section correlation,

1 E = (eit)N×T : eit = ρ2ei−1,t + (1− ρ22)1/2εit , εit
iid∼ N (0, 1)

2 Σ = IN : assume homoskedasiticity.

We let ρ1 = 0.5 for a mild degree of the cross-section correlation.
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Generating the noise

Case 3: Error term with non-guassion distributions,
1 E = (eitj)N×T : here we consider three types of non-guassion

distributions for eit : gamma, log-normal and chi-square with mean zero
and variance 0.5.

2 Σ = IN : assume homoskedasiticity.

Data dimensions:
1 There are 5 different (N,T ) pairs are considered in simulations, 5 types

of error terms, 5 factor estimation methods, and 6 types of factor
strengths.

2 In total there are 5× 5× 5 = 125 scenarios for strong factor estimation
and 5× 5× 5× 6 = 750 scenarios for strong and weak factor
estimation. For strong factor cases, each was simulated 1000 times.
For strong and weak factor cases, each was simulated 100 times.
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Results for strong factors only

All of those five methods can precisely choose the number of factors
when factors are ”strong” as long as the noise term is white.

When the data are serially correlated, all of those five methods have
poor performances to estimate the number of factors except ER
method when T is large.

When the data are cross-sectionally correlated, ED and ER are robust
for estimating the number factors. IC2, NE, and BCV have relatively
good performances when N is large.

All of those five method are not robust when the noise term in the
data have non-gaussian distributions such as lognormal, gamma, and
chi-square distribution.

Overall, for serially and cross-sectionally correlated data with guassion
distribution noise and large T , our simulation results suggest to use
ER method to estimate the number of factors in practice.
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Results for strong and weak factors

In all the those five methods, NE is designed to estimate the number
of strong and weak factors in white noise and BCV is designed to
estimate the number of strong and weak factors in heteroscedastic
noise. Other three methods are designed to estimate the number of
strong factors only.

For BCV and NE method, our results show that they perform quite
well when we have cross-sectionally correlated data and the error
terms in the factor model have guassian and chi-square distributions.
They are not robust to other cases of error terms however.
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Results for strong and weak factors

For ED method, our results show that it is quite robust to all types of
error terms in type 4 and type 6 factor strengths. That is, it is robust
when the ratio of strong to useful weak factors is large. Also, for
type2 - type5 factor strengths, the ED method performs quite well for
large N when the error terms in the factor model are highly serial
correlated.

For ER method, it is fail to estimate the number of weak factors in all
cases as we expected, since it designs for estimating the number of
strong factors only.

For IC2 method, our simulation results show that it performs quite
well in all types of mixed factor strengths when the error term in
factor model is white. Besides, it also robust to cross-sectional
correlated error terms in all types of mixed factor strengths when N is
large.

44 / 45



The End, thanks!
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