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Welcome 2

This course is designed to be:

1. Introductory

2. Leading by interesting questions and applications

3. Less math, useful, and fun!

Most important:

Feel free to ask any questions! �

Enjoy! �

https://github.com/CEPav


Recall 3

I Unobserved Components: trend, seasonal, cycle, noise.

yt = Tt + St + Ct + εt.

Or
yt = Tt × St × Ct × εt.

I We focus on seasonal on this lecture.



Seasonality 4

A seasonal pattern is one that repeats itself every year. It arises
from links of technologies, preferences and institutions to the
calendar.

We focus on the deterministic seasonality in which the annual
repetition can be exact.



I Example: monthly U.S. current-dollar liquor sales
1980.01 - 1992.01: very high in Nov. and Dec.



I Example: Monthly U.S. current-dollar durable goods sales,
1980.01 - 1992.01: fall in Dec.



I Example: Monthly U.S. current-dollar gasoline sales,
1980.01 - 1992.01: higher in summertime



Seasonally adjusted 8

One way to deal with seasonality in a series is simply to remove
it, and then to model and forecast the seasonally adjusted
series.

Useful when interest centers explicitly on forecasting
nonseasonal fluctuations.

Often inappropriate in business forecasting situations in which
all the variation in a series are interested.



Modeling Seasonality 9

A key technique for modeling seasonality is regression on
seasonal dummies.

Let s be the number of seasons in year. We can think it as the
number of observations on a series in each year.

I s = 4 if we have quarterly data

I s = 12 if we have monthly data

I s = 52 if we have weekly data



Recall 10

Regression analysis can also be used when the regressor is
binary, that is, when it takes on only two values, 0 or 1:

I X = 1 if small class size, = 0 if not

I X = 1 if female, = 0 if male

I X = 1 if treated (experimental drug), = 0 if not

Binary regressors are sometimes called “dummy” variables.



Interpretation 11

Interpreting regressions with a binary regressor

Yi = β0 + β1Xi + ui, i = 1, 2, · · · , n

where X is binary (Xi = 0 or 1):

I When Xi = 0, Yi = β0 + ui, the conditional mean of Yi
given Xi = 0 is β0. That is , E(Yi|Xi = 0) = β0.

I When Xi = 1, Yi = β0 + β1 + ui, the conditional mean of Yi
given Xi = 1 is β0 + β1. That is , E(Yi|Xi = 1) = β0 + β1.

So:

β1 = E(Yi|Xi = 1)− E(Yi|Xi = 0)

= population difference in group means.



Modeling Seasonality 12

Construct seasonal dummy variables:

I Use four seasons as an example,

D1 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, · · · )
D2 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, · · · )
D3 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, · · · )
D4 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, · · · ).

I D1 indicates whether we’re in the first quarter and so on.

I At any given time, we can be in only one of the four
quarters, so one seasonal dummy is 1, and all others are
zero.



Pure seasonal dummy model 13

The pure seasonal dummy model is

yt =

s∑
i=1

γiDit + εt.

I We’re just regressing on an intercept, but allow for a
different intercept in each season.

I Those different intercepts are called the seasonal factors;
they summarize the seasonal pattern over the year.

I In the absence of seasonality, we can drop all the seasonal
dummies and instead simply include an intercept in the
usual way.



Dummy variable trap 14

Instead of including a full set of s seasonal dummies, we can
include any (s-1) seasonal dummies and an intercept.

I the constant term is the intercept for the omitted season.

I the coefficients on the seasonal dummies give the seasonal
increase or decrease relative to the omitted season.

In no case, however, should we include s seasonal
dummies and an intercept.

I cause the issue of perfect multicollinearity (dummy variable
trap) if we do so.



Trend and seasonal model 15

Trend may be included as well, in which case the model is

yt = β1TIMEt +

s∑
i=1

γiDit + εt.

I Generalize what we did in modeling trend.

I The idea of seasonality may be extended to allow for more
general calendar effects, such as holiday variation and
trading-day variation.



Holiday variation 16

Holiday variation refers to the fact that some holidays’ dates
change over time.

I Arrive at approximately the same time each year, the exact
dates differ. (Easter)

I The behavior of many series depends in part on the timing
of such holidays.

I As with seasonality, holiday effects may be handled with
dummy variables.

Example: In a monthly model, in addition to a full set of
seasonal dummies, we might include an ”Easter dummy,” which
is 1 if the month contains Easter and 0 otherwise.



Trading-day variation 17

Trading-day variation refers to the fact that different months
contain different numbers of trading days or business days.

Example: In a monthly forecasting model of volume traded on
the London Stock Exchange, in addition to a full set of seasonal
dummies, we might include a trading day variable, whose value
each month is the number of trading days that month.



Complete model 18

Allowing for the possibility of holiday or trading day variation
gives the complete model

yt = β1TIMEt +

s∑
i=1

γiDit +

v1∑
i=1

δHD
i HDVit +

v2∑
i=1

δTD
i TDVit + εt.

I The HDVs are the relevant holiday variables (there are v1
of them).

I The TDVs are the relevant trading day variables (there are
v2 of them).

I This is just a standard regression equation and can be
estimated by ordinary least squares.



Forecasting Seasonal Series 19

We consider constructing an h-step-ahead point forecast,
yT+h,T , at time T :

yT+h,T = β1TIMET+h +

s∑
i=1

γiDi,T+h +

v1∑
i=1

δHD
i HDVit

+

v2∑
i=1

δTD
i TDVit.

Interval forecast: yT+h,T ± 1.96σ, assuming εt ∼ N(0, σ2).
Density forecast: N(yT+h,T, σ

2).



Forecasting Seasonal Series 20

To make the point forecast operational, we can replace the
unknown parameters with estimates:

ŷT+h,T = β̂1TIMET+h +

s∑
i=1

γ̂iDi,T+h +

v1∑
i=1

δ̂HD
i HDVi,T+h

+

v2∑
i=1

δ̂TD
i TDVi,T+h.

Interval forecast: ŷT+h,T ± 1.96σ̂.
Density forecast: N(ŷT+h,T, σ̂

2).



Application 21

Housing starts are seasonal because it’s usually preferable to
start houses in the spring, so that they’re completed before
winter arrives.

Date:
Monthly data on U.S. housing starts 1946.01 - 1994.11;
Use the 1946.01 - 1993.12 period for estimation;
1994.01 - 1994.11 period for out-of-sample forecasting.



I Housing Starts, 1946.01 - 1994.11



I Housing Starts, 1990.01 - 1994.11



Application 24

The figures reveal that there is no trend, so we’ll work with the
pure seasonal model,

yt =
s∑

i=1

γiDit + εt.

Here we let s = 12, which means we have twelve seasonal
dummies in the forecasting model.





Residual plot 26



In summary 27

I The twelve seasonal dummies account for more than a third
of the variation in housing starts, as adjusted R2 = .371.

I At least some of the remaining variation is cyclical, which
the model is not designed to capture. (Very low
Durbin-Watson statistic.)

I Rigid seasonal pattern (there’s nothing in the model other
than deterministic seasonal dummies) picks up a lot of the
variation in housing starts.



I Estimated Seasonal Factors for Housing Starts
(Twelve estimated coefficients)



I Housing Starts
History, 1990.01-1993.12; Forecast, 1994.01-1994.11



I Housing Starts
History, 1990.01-1993.12; Forecast, 1994.01-1994.11;
Realization, 1994.01-1994.11;
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