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Welcome 2

This course is designed to be:

1. Introductory

2. Leading by interesting questions and applications

3. Less math, useful, and fun!

Most important:

Feel free to ask any questions! �

Enjoy! �

https://github.com/CEPav


Goal 3

Reviews the core ideas of the theory of probability and
statistics that are needed to understand regression analysis and
econometrics

I The probability framework for statistical inference X

I Estimation

I Hypothesis Testing

I Confidence Intervals



Review 4

I Randomness, random variable

I Population, population distribution (discrete and
continuous)

I Moments: mean, variance, skewness and kurtosis

I Joint distribution and covariance, correlation

I Conditional distribution, conditional mean

I Sampling distribution



Recall 5

We use the sampling distribution of Ȳ to do the statistical
inference. So this is the key concept.

I Ȳ = (Y1 + Y2 + · · ·+ Yn)/n is a random variable

I The distribution of Ȳ over different possible samples of size
n is called the sampling distribution of Ȳ

I The mean and variance of Y are the mean and variance of
its sampling distribution, E(Ȳ ) and Var(Ȳ )

Question:
What are the differences from the population distribution of Y
and its corresponding moments E(Y ) and Var(Y )?



Questions 6

Why we need to study the sampling distribution of Ȳ and use it
for estimation instead of studying the distribution of Y
directly?

I For example, if we want to know how much the mean
earnings differ for men and women within U.S., what can
we do?

I Can we perform an exhaustive survey of the population of
workers to find the population distribution of earnings?

The key insight of statistics is that one can learn about a
population distribution by selecting a random sample from that
population.



Example 7

Suppose Y takes on 0 or 1 (a Bernoulli random variable) with
the probability distribution,

I P (Y = 1) = p = 0.78 and P (Y = 0) = 1− p = 0.22

I E(Y ) = µY = p× 1 + (1− p)× 0 = 0.78
Var(Y ) = E(Y − E(Y ))2 = σ2

Y = p(1− p) = 0.1716

The sampling distribution of Ȳ depends on n. Consider n = 2,
then the sampling distribution of (Ȳ ) is

I P (Ȳ = 0) = 0.222 = 0.0484

I P (Ȳ = 1/2) = 2× 0.22× 0.78 = 0.3432

I P (Ȳ = 1) = 0.782 = 0.6084

I Distribution of Ȳ ? Very complicated as n getting larger!!



Questions 8

Things we want to know about the sampling distribution of Ȳ ,
in order to use it to do estimation:

I What is E(Ȳ )?
If E(Ȳ ) = µY (population mean) = 0.78, then Ȳ is an
unbiased estimator of µY .

I What is Var(Ȳ )? Does it also depends on n?

I Does Ȳ become close to µY when n is large?

I Is it true that Ȳ is approximately normally distributed
(appears bell shape) for large n?



Estimation 9

The mean and variance of the sampling distribution of Ȳ in
general case, for Yi i.i.d. from any distribution, not just
Bernoulli:

I mean: E(Ȳ ) = E( 1
n

∑n
i=1 Yi) = 1

n

∑n
i=1E(Yi) = µY .

I variance:

Var(Ȳ ) = Var(
1

n

n∑
i=1

Yi)

=
1

n2
Var(

n∑
i=1

Yi) =
nσ2

Y

n2
=
σ2
Y

n
.

I Implication? Unbiased estimator!



Magic 10

For small sample sizes, we can only know E(Ȳ ) and Var(Ȳ ).
The sampling distribution of Ȳ is complicated and depends on
the distribution of Y , but if n is large, the sampling distribution
of Ȳ becomes simple!

1. As n increases, the distribution of Ȳ becomes more tightly
centered around µY (the Law of Large Numbers)

2. Moreover, the distribution of Ȳ (regardless the distribution
of Y !) becomes normal (the Central Limit Theorem):

I Ȳ is approximately distributed N(µY ,
σ2
Y

n )
I Standardized Ȳ : Z =

√
n(Ȳ − µY )/σY is approximately

distributed N(0, 1) (standard normal)



Recall example 11

Suppose Y takes on 0 or 1 (a Bernoulli random variable) with
the probability distribution,

I P (Y = 1) = p = 0.78 and P (Y = 0) = 1− p = 0.22

I E(Y ) = µY = p× 1 + (1− p)× 0 = 0.78

The sampling distribution of Ȳ depends on n. Consider n = 2,
then the sampling distribution of (Ȳ ) is

I P (Ȳ = 0) = 0.222 = 0.0484

I P (Ȳ = 1/2) = 2× 0.22× 0.78 = 0.3432

I P (Ȳ = 1) = 0.782 = 0.6084

I Distribution of Ȳ ? Very complicated as n getting larger!!







Review of Statistics



Goal 15

Reviews the core ideas of the theory of probability and
statistics that are needed to understand regression analysis and
econometrics

I The probability framework for statistical inference X

I Estimation X

I Hypothesis Testing

I Confidence Intervals



Hypothesis 16

Hypothesis: yes/no question.

I Do the mean hourly earnings of recent U.S. college
graduates equal 20 per hour?

I Are mean earnings the same for male and female college
graduates?

Both questions concern about the population distribution of
earnings and require evidence! The statistical challenge is to
answer these questions based on a sample of evidence.



Hypothesis Testing 17

The hypothesis testing problem for the mean E(Y ):

I Make a provisional decision based on the evidence at
hand whether a null hypothesis is true, or instead that
some alternative hypothesis is true. That is, test

H0 : E(Y ) = µY,0 vs. H1 : E(Y ) 6= µY,0

Example: the conjecture that, on average in the population,
college graduates earn 20 per hour constitutes a null hypothesis
about the population distribution of hourly earnings.

Remark: we can either rejecting the null hypothesis or
failing to do so.



P-value 18

In any given sample, the sample average Ȳ will rarely be
exactly equal to the hypothesized value µY,0. Two reasons cause
the difference:

I the null hypothesis is false

I the null hypothesis is true, but Ȳ differs from µY,0 because
of random sampling

It is impossible to distinguish between these two possibilities
with certainty, but it is possible to do a probabilistic calculation
that permits testing the null hypothesis in a way that accounts
for sampling uncertainty.



P-value 19

P-value = the probability of drawing a value of Ȳ that differs
from µY,0 by at least as much as Ȳ act, the value actually
computed with your data, assuming that the null hypothesis is
true.

Calculating the P-value based on Ȳ :

P-value = PH0 [|Ȳ − µY,0| > |Ȳ act − µY,0|],

where Ȳ act is the value of Ȳ actually observed (nonrandom).

I To compute the p-value, we need the to know the sampling
distribution of Ȳ , which is complicated if n is small.

I If n is large, we can use the normal approximation (CLT).



Compute P-value 20

When n is large, we know from CLT that the sampling
distribution of Ȳ is N(µY,0, σ

2
Y /n). Let σ2

Ȳ
= σ2

Y /n, so
(Ȳ − µY,0)/σȲ has a standard normal distribution. Hence, the
P-value can be computed as

P-value = PH0 [|Ȳ − µY,0| > |Ȳ act − µY,0|]

= PH0

(∣∣∣∣ Ȳ − µY,0σȲ

∣∣∣∣ > ∣∣∣∣ Ȳ act − µY,0
σȲ

∣∣∣∣)
= 2Φ

(
−
∣∣∣∣ Ȳ act − µY,0

σȲ

∣∣∣∣) ,
where Φ is the standard normal cumulative distribution
function.





P-value 22

In practice, σY is unknown and it can be estimated by the
sample variance of Y :

s2
Y =

1

n− 1

n∑
i

(Yi − Ȳ )2.

⇒ P-value ≈ PH0

(∣∣∣ Ȳ−µY,0

sY /
√
n

∣∣∣ > ∣∣∣ Ȳ act−µY,0

sY /
√
n

∣∣∣) = PH0(|t| > |tact|),

where t =
Ȳ−µY,0

sY /
√
n

the t-statistic, it approximate equal to

standard normal distribution when n is large.



Example 23

Suppose we want to test the null hypothesis that the mean
wage, E(Y ) = 20 per hour using a sample of n = 200 recent
college graduates.

I Step 1: compute the sample average wage Ȳ act = $22.64.

I Step 2: compute the sample standard deviation
sY = $18.14, so sY /

√
n = $18.14/

√
200 = 1.28.

I Step 3: compute the value of t-statistic
tact = (22.64− 20)/1.28 = 2.06, so the p-value is
2Φ(−2.06) = 0.039 or 3.9%.

That is, assuming the null hypothesis is true, the probability of
obtaining a sample average at least as different from the null as
the one actually computed is 3.9%. Reject!



Clever idea 24

We can do the hypothesis test without computing the p-value.
Instead, we can use a prespecified significance level. For
example, if the prespecified significance level is 5%,

I we reject the null hypothesis if |tact| > 1.96.

I equivalently, we reject if p-value ≤ 0.05.

This is often used in empirically studies. For example, we can
test the null hypothesis under different significance levels. The
most popular ones are 10%, 5% and 1%.



Goal 25

Reviews the core ideas of the theory of probability and
statistics that are needed to understand regression analysis and
econometrics

I The probability framework for statistical inference X

I Estimation X

I Hypothesis Testing X

I Confidence Intervals



Confidence Interval 26

A 95% confidence interval for µY is an interval that contains
the true value of µY in 95% of repeated samples. It can always
be constructed as the set of values of µY not rejected by a
hypothesis test with a 5% significance level:{

µY :

∣∣∣∣ Ȳ act − µY
sY /
√
n

∣∣∣∣ ≤ 1.96

}
= {µY : − 1.96 ≤ Ȳ act − µY

sY /
√
n
≤ 1.96

}
=

{
µY ∈

(
Ȳ act − 1.96

SY√
n
, Ȳ act + 1.96

SY√
n

)}
.

Example, given Ȳ act = $22.64 and sY /
√
n = 1.28, the 95%

confidence interval for mean hourly earnings is:
(22.64− 1.96× 1.28, 22.64 + 1.96× 1.28) = ($20.13, $25.15).



Go back 27

Key question: Do districts with smaller classes have
higher test scores? We can get the numerical evidence from
the data set by following steps:

1. Compare average test scores in districts with low STRs to
those with high STRs (“estimation”)

2. Test the “null” hypothesis that the mean test scores in the
two types of districts are the same, against the
“alternative” hypothesis that they differ (“hypothesis
testing”)

3. Estimate an interval for the difference in the mean test
scores, high v.s. low STR districts (“confidence
interval”)





Estimation 29

The mean difference between two group samples:

Ȳs − Ȳl =
1

ns

ns∑
i=1

Yi −
1

nl

nl∑
i=1

Yi

= 657.4− 650.0

= 7.4.

Question:

I Is this result statistically significant? at what level?

I Is this a big enough difference to be important for school
reform discussions, for parents, or for a school committee?



Hypothesis testing 30

Difference-in-means test: compute the t-statistic,

t =
Ȳs − Ȳl√
s2s
ns

+
s2l
nl

=
657.4− 650.0√

11.42

238 + 17.922

182

=
7.4

1.83
= 4.05 > 1.96,

so reject the null hypothesis (no difference between group
means) at the 5% significance level. That is this result is
statistically significant at 5% level.



Confidence interval 31

A 95% confidence interval for the difference between the means
is, (

Ȳs − Ȳl
)
±1.96×

√
s2
s

ns
+
s2
l

nl

= 7.4± 1.96× 1.83 = (3.8, 11.0).

Two equivalent statements:

1. The 95% confidence interval for ∆ doesn’t include 0;

2. The hypothesis that ∆ = 0 is rejected at the 5% level.



Next lecture 32

Simple Linear Regression

Read: Stock & Watson, Chapter 4.
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